首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2429篇
  免费   107篇
  国内免费   4篇
化学   2110篇
晶体学   5篇
力学   27篇
数学   212篇
物理学   186篇
  2024年   3篇
  2023年   26篇
  2022年   116篇
  2021年   128篇
  2020年   61篇
  2019年   66篇
  2018年   54篇
  2017年   40篇
  2016年   113篇
  2015年   82篇
  2014年   109篇
  2013年   140篇
  2012年   153篇
  2011年   217篇
  2010年   111篇
  2009年   115篇
  2008年   175篇
  2007年   160篇
  2006年   136篇
  2005年   127篇
  2004年   97篇
  2003年   79篇
  2002年   61篇
  2001年   21篇
  2000年   12篇
  1999年   16篇
  1998年   15篇
  1997年   11篇
  1996年   14篇
  1995年   13篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1972年   2篇
  1938年   1篇
  1933年   2篇
  1932年   1篇
排序方式: 共有2540条查询结果,搜索用时 15 毫秒
131.
Cordierite porous ceramics Z, X, and K were prepared using three mixtures of clay minerals: Z from kaolinite, talc, and aluminum hydroxide, X from kaolinite, talc, vermiculite, and aluminum hydroxide, and K from kaolinite, talc, and magnesium oxide. Ceramics were different in porosity, specific surface area, cordierite polymorphs, and secondary crystalline phases. Vermiculite influenced textural architecture of calcined cordierite ceramics X and predestinated crystallization of the high-temperature hexagonal α-cordierite with secondary minerals enstatite, spinel and corundum. Ceramics Z contained low-temperature orthorhombic β-cordierite, enstatite, and corundum, K was diphase of β-cordierite and forsterite. Total pore area (TPA) and specific surface area (SSA) of X, in spite of the higher porosity and the pore size distribution in the range of 300–1000 nm, were smaller in comparison with TPA and SSA of Z. Ceramics K retained high porosity, two maxima at 300–1000 nm and 50–200 nm in the pores size distribution, and the highest TPA and SSA compared to those observed in ceramics Z and X. Presented at the 8th Conference on Solid State Chemistry, 6-11 July 2008, Bratislava, Slovak Republic.  相似文献   
132.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   
133.
The influence of lateral ligand mobility on cell attachment and receptor clustering has previously been explored for membrane-anchored molecules involved in cell-cell adhesion. In this study, we considered instead a cell binding motif from the extracellular matrix. Even though the lateral mobility of extracellular matrix ligands in membranes does not occur in vivo, we believe it is of interest for cell engineering in vitro. As is the case for cell-cell adhesion molecules, lateral mobility of extracellular matrix ligands could influence cell attachment and, subsequently, cell behavior in cell culture. In this paper, the accessibility and functionality of extracellular matrix ligands presented at surfaces were evaluated for the conditions of laterally mobile versus non-mobile ligands by studying ligand-antibody binding events and early cell attachment as a function of ligand concentration. We compare the initial attachment of rat-derived adult hippocampal progenitor (AHP) cells on laterally mobile, supported phospholipid bilayer membranes to non-mobile, poly-L-lysine-grafted-poly(ethylene glycol) (PLL-g-PEG) polymer films functionalized with a range of laminin-derived IKVAV-containing peptide densities. To this end, synthesis of a new PLL-g-PEG/PEG-IKVAV polymer is described. The characterization of available IKVAV peptides on both surface presentations schemes was explored by studying the mass uptake of anti-IKVAV antibodies using a combination of the surface-sensitive techniques quartz crystal microbalance with dissipation monitoring, surface plasmon resonance spectroscopy, and optical waveguide lightmode spectroscopy. IKVAV-containing peptides presented on laterally mobile, supported phospholipid bilayers and non-mobile PLL-g-PEG were recognized by the anti-IKVAV antibody in a dose-dependent manner, indicating that the amount of available IKVAV ligands increases proportionally with ligand density over the concentrations tested. Attachment of AHP cells to IKVAV-functionalized PLL-g-PEG and supported phospholipid bilayers followed a sigmoidal dependence on peptide concentration, with a critical concentration of approximately 3 pmol/cm2 IKVAV ligands required to support initial AHP cell attachment for both surface modifications. There appeared to be little influence of IKVAV peptide mobility on the initial attachment of AHP cells. Although the spread in the cell attachment data was larger for the PLL-g-PEG surface modification, this was reduced when observed after 24 h, indicating that the cells might need longer times to establish attachment strengths equivalent to those observed on peptide-functionalized supported lipid bilayers. The present study is a step toward understanding the influence of extracellular-matrix-derived ligand mobility on cell fate. Further analysis should focus on the systematic tuning of lateral ligand diffusion, as well as a comparison between the response of non-spreading cells (i.e., AHPs), versus spreading cells (i.e., fibroblasts).  相似文献   
134.
A densitometric high performance thin-layer chromatographic (HPTLC) method was developed and validated for quantitative analysis of L-DOPA in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone-chloroform-n-butanol-acetic acid glacial-water (60:40:40:40:35 v/v/v/v/v) as mobile phase. Quantitative analysis was carried out at a wavelength of 497 nm. The method was linear between 100 and 500 ng/microL, with a correlation coefficient of 0.999. The intra-assay variation was between 0.26 and 0.65% and the interassay was between 0.52 and 2.04%. The detection limit was 1.12 ng/microL, and the quantification limit was 3.29 ng/microL. The accuracy ranged from 100.40 to 101.09%, with a CV not higher than 1.40%. The method was successfully applied to quantify L-DOPA in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision, and accurate for the quantitative determination of L-DOPA in tablets.  相似文献   
135.
A homologous nanoparticle library was synthesized in which gold nanoparticles were coated with polyethylene glycol, whereby the diameter of the gold cores, as well as the thickness of the shell of polyethylene glycol, was varied. Basic physicochemical parameters of this two‐dimensional nanoparticle library, such as size, ζ‐potential, hydrophilicity, elasticity, and catalytic activity ,were determined. Cell uptake of selected nanoparticles with equal size yet varying thickness of the polymer shell and their effect on basic structural and functional cell parameters was determined. Data indicates that thinner, more hydrophilic coatings, combined with the partial functionalization with quaternary ammonium cations, result in a more efficient uptake, which relates to significant effects on structural and functional cell parameters.  相似文献   
136.
A study on the influence of the cation coordination number, number of Lewis acid centers, concurrent existence of Lewis base sites, and structure topology on the catalytic activity of six new indium MOFs, has been carried out for multicomponent reactions (MCRs). The new indium polymeric frameworks, namely [In8(OH)6(popha)6(H2O)4]?3 H2O ( InPF‐16 ), [In(popha)(2,2′‐bipy)]?3 H2O ( InPF‐17 ), [In3(OH)3(popha)2(4,4′‐bipy)]?4 H2O ( InPF‐18 ), [In2(popha)2(4,4′‐bipy)2]?3 H2O ( InPF‐19 ), [In(OH)(Hpopha)]?0.5 (1,7‐phen) ( InPF‐20 ), and [In(popha)(1,10‐phen)]?4 H2O ( InPF‐21 ) (InPF=indium polymeric framework, H3popha=5‐(4‐carboxy‐2‐nitrophenoxy)isophthalic acid, phen=phenanthroline, bipy=bipyridine), have been hydrothermally obtained by using both conventional heating (CH) and microwave (MW) procedures. These indium frameworks show efficient Lewis acid behavior for the solvent‐free cyanosilylation of carbonyl compounds, the one pot Passerini 3‐component (P‐3CR) and the Ugi 4‐component (U‐4CR) reactions. In addition, InPF‐17 was found to be a highly reactive, recyclable, and environmentally benign catalyst, which allows the efficient synthesis of α‐aminoacyl amides. The relationship between the Lewis base/acid active site and the catalytic performance is explained by the 2D seven‐coordinated indium framework of the catalyst InPF‐17 . This study is an attempt to highlight the main structural and synthetic factors that have to be taken into account when planning a new, effective MOF‐based heterogeneous catalyst for multicomponent reactions.  相似文献   
137.
Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium–nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2(μ‐CN)(μ‐O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsUIV–N–UIV core to yield CsUIII(OTf) and [MeN=UV] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.  相似文献   
138.
Coordination compounds of copper have been invoked as major actors in processes involving the reduction of molecular oxygen, mostly with the generation of radical species the assignment for which has, so far, not been fully addressed. In the present work, we have carried out studies in solution and on surfaces to gain insights into the nature of the radical oxygen species (ROS) generated by a copper(II) coordination compound containing a thioether clip‐phen derivative, 1,3‐bis(1,10‐phenanthrolin‐2‐yloxy)‐N‐(4‐(methylthio)benzylidene)propan‐2‐amine (2CP‐Bz‐SMe), enabling its adsorption/immobilization to gold surfaces. Whereas surface plasmon resonance (SPR) and electrochemistry of the adsorbed complex indicated the formation of a dimeric CuI intermediate containing molecular oxygen as a bridging ligand, scanning electrochemical microscopy (SECM) and nuclease assays pointed to the generation of a ROS species. Electron paramagnetic resonance (EPR) data reinforced such conclusions, indicating that radical production was dependent on the amount of oxygen and H2O2, thus pointing to a mechanism involving a Fenton‐like reaction that results in the production of OH..  相似文献   
139.
Aqueous mixtures containing a homopolymer, poly(vinylpyrrolidone) (PVP), or a hydrophobically modified graft copolymer, HM-pullulan, (PULAU9, where 9 stands for the nominal substitution degree), and different Gemini surfactants have been investigated at 25.0 degrees C. A wide variety of experimental conditions were addressed by changing the amount of polymer and of surfactant. The Gemini surfactants were synthesized, purified, and characterized by routine methods. They differ from each other in polar head groups (two sulfonate-, two quaternary ammonium-, or two arginine-based groups), in alkyl chain length (11 or 12 carbon atoms), and in the distance between the polar head groups. The spacers consist of 2, 3, and 6 methylene units or 3 oxyethylene units. Surface activity and solution calorimetry measurements yield some physicochemical features inherent to micelle formation and polymer-surfactant interactions. The data are supported by ionic conductivity, detecting the critical thresholds and quantifying the modifications in binding associated with critical association (CAC) and micelle formation (CMC*). The Gibbs energy of transfer from the micelles to a polymer-binding site, DeltaGtrans, was evaluated from the CAC/CMC* ratios versus the amount of added polymer. A similar procedure determined the enthalpy of transfer, DeltaHtrans. DeltaGtrans decreases with added polymer, whereas DeltaHtrans becomes more negative on increasing the amount of polymer in the medium. According to the selected data presented here, cationic Geminis do not interact with PVP, while significant interactions have been observed in other surfactants. In mixtures with PULAU9, the interaction is significant for all Geminis. This effect is due to interactions between the surfactants and the hydrophobic alkyl groups on the main polymer chain. The pendent groups facing away from the polysaccharide chain act as binding sites for aggregates onto such polymers.  相似文献   
140.
In this work we have analyzed the structural, topographical, and shear characteristics of mixed monolayers formed by adsorbed beta-lactoglobulin (beta-lg) and spread monoglyceride (monopalmitin or monoolein) on a previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm, Brewster angle microscopy (BAM), and surface shear characteristics were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The pi-A isotherm and BAM images deduced for adsorbed beta-lactoglobulin-monoglyceride mixed films at pi lower than the equilibrium surface pressure of beta-lactoglobulin (pi(e)(beta-lg)) indicate that beta-lactoglobulin and monoglyceride coexist at the interface. However, the interactions between protein and monoglyceride are somewhat weak. At higher surface pressures (at pi > or = pi(e)(beta-lg)) a protein displacement by the monoglyceride from the interface takes place. The surface shear viscosity (eta(s)) of mixed films is very sensitive to protein-monoglyceride interactions and displacement as a function of monolayer composition (protein/monoglyceride fraction) and surface pressure. Shear can induce change in the morphology of monoglyceride and beta-lactoglobulin domains, on the one hand, and segregation between domains of the film-forming components on the other hand. In addition, the displacement of beta-lactoglobulin by the monoglycerides is facilitated under shear conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号