首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   37篇
  国内免费   2篇
化学   711篇
晶体学   5篇
力学   10篇
数学   74篇
物理学   105篇
  2024年   1篇
  2023年   9篇
  2022年   49篇
  2021年   53篇
  2020年   27篇
  2019年   35篇
  2018年   22篇
  2017年   19篇
  2016年   29篇
  2015年   36篇
  2014年   46篇
  2013年   63篇
  2012年   66篇
  2011年   83篇
  2010年   44篇
  2009年   34篇
  2008年   48篇
  2007年   55篇
  2006年   39篇
  2005年   32篇
  2004年   25篇
  2003年   21篇
  2002年   11篇
  2001年   14篇
  2000年   5篇
  1999年   9篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1969年   1篇
  1965年   2篇
排序方式: 共有905条查询结果,搜索用时 15 毫秒
41.
Roflumilast is a phosphodiesterase type 4 inhibitor that is administered orally as a long-term, in the clinical treatment of chronic obstructive pulmonary disease and asthma. Launched in 2010 for the European market, it currently does not have an official monograph. Here, a reproducible gradient RP-HPLC method was developed and validated for the separation and determination of Roflumilast in the presence of its six major degradation products. Separation was performed on a C18 analytical column (250?×?4.6?mm, 5?µm) with a mobile phase-A of ACN and a phase-B of ammonium acetate buffer (5?mM, pH 4.2) containing triethylamine (0.5% v/v). The most effective RP-HPLC gradient program was determined to be 0/80, 35/10, 36/80, 40/80 (time in minutes/% mobile phase-B). The flow rate was 1.0?ml/min and the column temperature was 25°C. The success of separation of the degradation products with different chemical characteristics was obtained by extending the time of the gradient, changing the proportion of the mobile phases and increasing the velocity of the flow. Two detectors were evaluated for the identification of degradation products and Roflumilast: a diode-arrary detector and a charged aerosol detector. The inability of the charged aerosol detector to dectect one of the six degradation products indicated that the method developed with RP-HPLC and the diode-array detector was more suitable for Roflumilast analysis. The method was validated according to specificity, linearity, LOD, LOQ, accuracy, precision and robustness.  相似文献   
42.
43.
44.
45.
46.
47.
48.
Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.  相似文献   
49.
An electrochemical DNA biosensor for human papillomavirus (HPV) 16 detection has been developed. For this proposed biosensor, l-cysteine was first electrodeposited on the gold electrode surface to form l-cysteine film (CYSFILM). Subsequently, HPV16-specific probe was immobilized on the electrode surface with CYSFILM. Electrochemistry measurement was studied by differential pulse voltammetry method (DPV). The measurement was based on the reduction signals of methylene blue (MB) before and after hybridization either between probe and synthetic target or extracted DNA from clinical samples. The effect of probe concentration was analyzed and the best results were seen at 1000 nM. The hybridization detection presented high sensitivity and broad linear response to the synthetic-target concentration comprised between 18.75 nM and 250 nM as well as to a detection limit of 18.13 nM. The performance of this biosensor was also investigated by checking probe-modified electrode hybridization with extracted DNA from samples. The results showed that the biosensor was successfully developed and exhibited high sensitivity and satisfactory selectivity to HPV16. These results allow for the possibility of developing a new portable detection system for HPVs and for providing help in making an effective diagnosis in the early stages of infection.  相似文献   
50.
The crystal structures of the M2NaIO6 series (M = Ca, Sr, Ba), prepared at 650 °C by ceramic methods, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by oxidizing I with O2(air) to I7+ followed by crystal growth in the presence of NaF as mineralizator, or by the reaction of the alkali‐metal periodate with the alkaline‐earth metal hydroxide. All three compounds are insoluble and stable in water. The barium compound crystallizes in the cubic space group Fm3m (no. 225) with lattice parameters of a = 8.3384(1) Å, whereas the strontium and calcium compounds crystallize in the monoclinic space group P21/c (no. 14) with a = 5.7600(1) Å, b = 5.7759(1) Å, c = 9.9742(1) Å, β = 125.362(1)° and a = 5.5376(1) Å, b = 5.7911(1) Å, c = 9.6055(1) Å, β = 124.300(1)°, respectively. The crystal structure consists of either symmetric (for Ba) or distorted (for Sr and Ca) perovskite superstructures. Ba2NaIO6 contains the first perfectly octahedral [IO6]5– unit reported. The compounds of the ortho‐periodates are stable up to 800 °C. Spectroscopic measurements as well as DFT calculations show a reasonable agreement between calculated and observed IR‐ and Raman‐active vibrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号