首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1577篇
  免费   37篇
  国内免费   13篇
化学   843篇
晶体学   46篇
力学   63篇
数学   364篇
物理学   311篇
  2023年   11篇
  2022年   19篇
  2021年   52篇
  2020年   33篇
  2019年   19篇
  2018年   27篇
  2017年   13篇
  2016年   58篇
  2015年   31篇
  2014年   53篇
  2013年   94篇
  2012年   73篇
  2011年   65篇
  2010年   63篇
  2009年   69篇
  2008年   95篇
  2007年   69篇
  2006年   71篇
  2005年   54篇
  2004年   44篇
  2003年   42篇
  2002年   53篇
  2001年   23篇
  2000年   42篇
  1999年   28篇
  1998年   25篇
  1997年   16篇
  1996年   24篇
  1995年   21篇
  1994年   16篇
  1993年   16篇
  1992年   21篇
  1991年   10篇
  1990年   13篇
  1989年   19篇
  1988年   19篇
  1987年   14篇
  1986年   18篇
  1985年   20篇
  1984年   21篇
  1983年   13篇
  1982年   18篇
  1981年   9篇
  1980年   12篇
  1979年   6篇
  1978年   11篇
  1977年   8篇
  1976年   10篇
  1974年   5篇
  1873年   6篇
排序方式: 共有1627条查询结果,搜索用时 15 毫秒
91.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
92.
The flexibility of dose and dosage forms makes 3D printing a very interesting tool for personalized medicine, with fused deposition modeling being the most promising and intensively developed method. In our research, we analyzed how various types of disintegrants and drug loading in poly(vinyl alcohol)-based filaments affect their mechanical properties and printability. We also assessed the effect of drug dosage and tablet spatial structure on the dissolution profiles. Given that the development of a method that allows the production of dosage forms with different properties from a single drug-loaded filament is desirable, we developed a method of printing ketoprofen tablets with different dose and dissolution profiles from a single feedstock filament. We optimized the filament preparation by hot-melt extrusion and characterized them. Then, we printed single, bi-, and tri-layer tablets varying with dose, infill density, internal structure, and composition. We analyzed the reproducibility of a spatial structure, phase, and degree of molecular order of ketoprofen in the tablets, and the dissolution profiles. We have printed tablets with immediate- and sustained-release characteristics using one drug-loaded filament, which demonstrates that a single filament can serve as a versatile source for the manufacturing of tablets exhibiting various release characteristics.  相似文献   
93.
The present Letter demonstrates a pop-in event that is caused by a nanoindentation-induced phase transformation in GaAs, and not accompanied by any dislocation nucleation. Our computer simulations reveal the appearance of the new phase, documented by the structural correlation functions and visualization of the atomic positions. This challenges the orthodox view that the initial pop-in event reflects nucleation of dislocations or their movement, and has a bearing on materials where dislocation activity is not present.  相似文献   
94.
Abstract

Aminophosphonic acids have become important in different fields of chemistry, medicine and agriculture. In this review article, we highlight a new strategy developed in the author's laboratory of asymmetric synthesis of enantiomeric aminophosphonic acid that users chiral sulfinimines as reagents. A key reaction in the synthesis of enantiopure α-, β- and γ-aminophosphonic acids is a highly or fully diastereoselective addition of trivalent phosphorus nucleophiles and α-phosphonate carbanions to enantiopure sulfinimines. The steric course of these addition reactions is rationalized. The usefulness of the sulfinimine methodology is demonstrated by the synthesis of biologically active enantiopure 2-amino-3-phosphonopropanoic acid (AP3), 2-amino-4-phosphonobutanoic acid (AP4) and phosphoemeriamine.  相似文献   
95.
Sirtuins are NAD+‐dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide‐based inhibitors that interact with the NAD+ binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X‐ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5.  相似文献   
96.
The biocatalytic production of flavor naturals that determine chemosensory percepts of foods and beverages is an ever challenging target for academic and industrial research. Advances in chemical trace analysis and post‐genomic progress at the chemistry–biology interface revealed odor qualities of nature’s chemosensory entities to be defined by odorant‐induced olfactory receptor activity patterns. Beyond traditional views, this review and meta‐analysis now shows characteristic ratios of only about 3 to 40 genuine key odorants for each food, from a group of about 230 out of circa 10 000 food volatiles. This suggests the foodborn stimulus space has co‐evolved with, and roughly match our circa 400 olfactory receptors as best natural agonists. This perspective gives insight into nature’s chemical signatures of smell, provides the chemical odor codes of more than 220 food samples, and beyond addresses industrial implications for producing recombinants that fully reconstruct the natural odor signatures for use in flavors and fragrances, fully immersive interactive virtual environments, or humanoid bioelectronic noses.  相似文献   
97.
Targeting epidermal growth factor receptor (EGFR) through an allosteric mechanism provides a potential therapeutic strategy to overcome drug-resistant EGFR mutations that emerge within the ATP binding site. Here, we develop an allosteric EGFR degrader, DDC-01-163, which can selectively inhibit the proliferation of L858R/T790M (L/T) mutant Ba/F3 cells while leaving wildtype EGFR Ba/F3 cells unaffected. DDC-01-163 is also effective against osimertinib-resistant cells with L/T/C797S and L/T/L718Q EGFR mutations. When combined with an ATP-site EGFR inhibitor, osimertinib, the anti-proliferative activity of DDC-01-163 against L858R/T790M EGFR-Ba/F3 cells is enhanced. Collectively, DDC-01-163 is a promising allosteric EGFR degrader with selective activity against various clinically relevant EGFR mutants as a single agent and when combined with an ATP-site inhibitor. Our data suggests that targeted protein degradation is a promising drug development approach for mutant EGFR.  相似文献   
98.
99.
A new CE method with ultraviolet–visible detection was developed in this study to investigate manganese dissolution in lithium ion battery electrolytes. The aqueous running buffer based on diphosphate showed excellent stabilization of labile Mn3+, even under electrophoretic conditions. The method was optimized regarding the concentration of diphosphate and modifier to obtain suitable signals for quantification. Additionally, the finally obtained method was applied on carbonate-based electrolytes samples. Dissolution experiments of the cathode material LiNi0.5Mn1.5O4 (lithium nickel manganese oxide [LNMO]) in aqueous diphosphate buffer at defined pH were performed to investigate the effect of a transition metal-ion-scavenger on the oxidation state of dissolved manganese. Quantification of both Mn species revealed the formation of mainly Mn3+, which can be attributed to a comproportionation reaction of dissolved and complexed Mn2+ with Mn4+ at the surface of the LNMO structure. It was also shown that the formation of Mn3+ increased with lower pH. In contrast, dissolution experiments of LNMO in carbonate-based electrolytes containing LIPF6 showed only dissolution of Mn2+.  相似文献   
100.
This study is aimed to observe changes in fatty acid profiles by time of flight secondary ion mass spectrometry (ToF‐SIMS) in breast muscle tissues of broilers. Four different groups were identified. The source of fat in group I was soy oil (rich in linoleic acid, ω‐6), group II received linseed oil (ω‐3), and the third group was fed a mixture of the two mentioned oils. Broilers in the control group were fed with beef tallow, used in mass commercial production. The results reveal that the use of vegetable oils in animal nutrition determines the lipid profile of fatty acids. ToF‐SIMS measurements showed that the lipid profile of muscle fibers and intramuscular fat reflect the composition of fats used as feed additives. In both structures, the ratio of ω‐6/ω‐3 fatty acids, which is most favorable for human health, was found in the groups in which a mixture of vegetable oils and a supplement of linseed oil were used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号