首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
化学   67篇
力学   5篇
数学   14篇
物理学   37篇
  2023年   3篇
  2022年   6篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   13篇
  2011年   8篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有123条查询结果,搜索用时 0 毫秒
101.
Bansal T  Awasthi A  Jaggi M  Khar RK  Talegaonkar S 《Talanta》2008,76(5):1015-1021
A new, simple, sensitive and specific reversed-phase high performance liquid chromatographic (HPLC) method using ultraviolet detection was developed and validated for the analysis of CPT-11 (lambda(max)=254 nm, 365 nm) and its major active metabolite, SN-38 (lambda(max)=380 nm) in rat plasma and bile. The sample pre-treatment from plasma involved a single protein precipitation step with cold acetonitrile. In case of bile, liquid-liquid extraction with dichloromethane: tert-butyl methyl ether (3:7) was carried out. Topotecan, a structurally related camptothecin, was used as an internal standard. An aliquot of 50 microL was injected onto a C-18 column. The chromatographic separation was achieved by gradient elution consisting of acetonitrile and water (pH 3.0 adjusted with 20% o-phosphoric acid) at a flow rate of 1.0 ml/min. Total run time for each sample was 30 min. All the analytes viz. topotecan, CPT-11, SN-38 were well separated with retention times of 11.4, 13.4 and 15.5 min, respectively. Method was found to be selective, linear (R(2) approximately 0.999), accurate (recovery+/-15%) and precise (<5% C.V.) in the selected concentration ranges for both the analytes. The quantification limit for CPT-11 was 40 ngml(-1) and for SN-38 was 25 ngml(-1). The percent extraction efficiency was approximately 97% for CPT-11 and SN-38 from plasma while extraction recovery of CPT-11 and SN-38 from bile was approximately 70% and approximately 60%, respectively. The method was successfully used to determine plasma and biliary excretion time profiles of CPT-11 and SN-38, following oral and intravenous CPT-11 administration in rats. In the present study, irinotecan showed an absolute bioavailability of 30% as calculated from the pharmacokinetic data.  相似文献   
102.
The synthetic method for preparing N-(3-hydroxypropyl) 3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-amide can lead to formation of at least three different crystal forms - an anhydrous compound and two monohydrates. The structural and thermal properties of these forms have been characterized by 13C-CP/MAS-NMR and IR spectroscopy, thermo- gravimetry, differential scanning calorimetry and by powder and single crystal x-ray crystallography. In addition, theoretical 13C-NMR chemical shift calculations were also performed for the anhydrous compound and for the first monohydrate, starting from single crystal structures and the structures of these species have now been verified. The first monohydrate, C27H47NO4 x H2O, crystallizes in orthorhombic space group P2(1)2(1)2(1) with cell parameters: a = 7.1148(2), b = 18.1775(5), c = 20.1813(6), Z = 4.  相似文献   
103.
Structural Chemistry - The present work describes the synthesis of novel 3-[2-(5-phenyl-1,3-thiazol-2-yl)hydrazinyl]-1,3-dihydro-2H-indol-2-one derivatives 4(a-h) and the characterization of...  相似文献   
104.
The synthetic procedure of lithocholyl-N-(2-aminoethyl)amide yielded a mixture of several forms detected by solid state 13C CP/MAS NMR although the solution state NMR unambiguously ascertained that the compound was pure. By recrystallization from various solvents one pure polymorph alongside with four solvates were isolated. The structures of the pure polymorph and the solvates were characterized by 13C and 15N CP/MAS NMR and powder X-ray diffraction (PXRD) methods. Variable contact time and dipolar dephasing experiments were employed to obtain optimized CP parameters and to distinguish various CH n (n = 0–3) resonances. CSA analyses of spinning side bands at different spinning rates showed small variations in the shielding tensor values of the carbonyl group between the pure polymorph (recrystallized from acetonitrile, tetrahydrofuran and 1,4-dioxane) and p-xylene solvate.  相似文献   
105.
Egg shell membrane is a novel, robust, microporous, cost effective, easily available organic support material. In recent studies egg shell membranes were utilized as organic support for enzyme immobilization. But low conjugation yield limits its application as good support for biotechnological industries. In present study egg shell membrane was chemically treated to introduce free functional groups for covalent linkage of proteins to increase its conjugation yield and stability of conjugate complex. Many enzymes were tested for immobilization on modified egg shell membrane like oxalate oxidase, glucose oxidase, peroxidase and lipase. A fifteen to sixteen fold increase in conjugation yield was observed when immobilization was performed after chemical treatment in comparison to immobilization on native membrane with slight change in specific activity of immobilized enzyme which ranges from 5% to 15%. Egg shell membrane bound enzymes showed slight changes in their kinetic properties after immobilization. Egg shell membrane bound oxalate oxidase shows detection limit of 1.5 μM when used for urinary oxalate determination. Egg shell membrane support shows no interference to enzyme activity and a good correlation of 0.99 was observed with the values estimated using commercially available Sigma kit. The immobilized oxalate oxidase, glucose oxidase, peroxidase and lipase were stable up to duration of 180 days and there is respective loss of 10%, 13%, 24%, and 33% of initial activity. Overall result strengthens our view of using chemically modified egg shell membrane as solid support for better immobilization of enzymes and can be used in various biotechnological applications.  相似文献   
106.
The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity of the MWIS problem for hole-free graphs is unknown. In this paper, we first prove that the MWIS problem for (hole, dart, gem)-free graphs can be solved in O(n3)-time. By using this result, we prove that the MWIS problem for (hole, dart)-free graphs can be solved in O(n4)-time. Though the MWIS problem for (hole, dart, gem)-free graphs is used as a subroutine, we also give the best known time bound for the solvability of the MWIS problem in (hole, dart, gem)-free graphs.  相似文献   
107.
Multiferroics, materials that exhibit coupling between spontaneous magnetic and electric dipole ordering, have significant potential for high-density memory storage and the design of complex multistate memory elements. In this work, we have demonstrated the solvent-controlled synthesis of Cr(3+)-doped BaTiO(3) nanocrystals and investigated the effects of size and doping concentration on their structure and phase transformation using X-ray diffraction and Raman spectroscopy. The magnetic properties of these nanocrystals were studied by magnetic susceptibility, magnetic circular dichroism (MCD), and X-ray magnetic circular dichroism (XMCD) measurements. We observed that a decrease in nanocrystal size and an increase in doping concentration favor the stabilization of the paraelectric cubic phase, although the ferroelectric tetragonal phase is partly retained even in ca. 7 nm nanocrystals having the doping concentration of ca. 5%. The chromium(III) doping was determined to be a dominant factor for destabilization of the tetragonal phase. A combination of magnetic and magneto-optical measurements revealed that nanocrystalline films prepared from as-synthesized paramagnetic Cr(3+)-doped BaTiO(3) nanocrystals exhibit robust ferromagnetic ordering (up to ca. 2 μ(B)/Cr(3+)), similarly to magnetically doped transparent conducting oxides. The observed ferromagnetism increases with decreasing constituent nanocrystal size because of an enhancement in the interfacial defect concentration with increasing surface-to-volume ratio. Element-specific XMCD spectra measured by scanning transmission X-ray microscopy (STXM) confirmed with high spatial resolution that magnetic ordering arises from Cr(3+) dopant exchange interactions. The results of this work suggest an approach to the design and preparation of multiferroic perovskite materials that retain the ferroelectric phase and exhibit long-range magnetic ordering by using doped colloidal nanocrystals with optimized composition and size as functional building blocks.  相似文献   
108.
The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La-Nd, Sm-Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er-Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE-O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.  相似文献   
109.
Novel head-to-head lithocholaphanes 6 and 11 have been synthesized via precursors 1–5 and 7–10 with overall good yields, and characterized by 1H, 13C, and 15N NMR spectroscopy, ESI-TOF mass spectrometry, thermal analysis, and molecular modeling. In addition, the binding abilities of 6 and 11 towards alkali metal cations have been investigated via competitive complexation studies using equimolar mixtures of Li+, Na+, K+, and Rb+-cations, and cholaphanes 6 and 11. The formation of cation–cholaphane adducts was detected by ESI-TOF mass spectrometry. The trends in these comparative binding studies are nicely reproduced theoretically with PM3 energetically optimized structures of 6 and 11 and their interaction energies with alkali metal cations calculated by molecular mechanics. Cholaphane 11 possessing a peptoid type structural fragment, –(CH2CONHCH2CH2)2O–, as a coordination sphere, shows binding tendency towards lithium and sodium cations, whereas 6 possessing an ester type, –(CH2OCOCH2)2O–, moiety and a bigger cavity size than 11, shows merely a tendency towards bigger alkali metal cations, potassium and rubidium.  相似文献   
110.
We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate ϕ as the number of perturbations occurring to the parameter in unit time. It is shown that ϕ is the most significant quantity that determines the quality of synchronization. It is found that parameter fluctuations with high fluctuation rates do not destroy synchronization, irrespective of the statistical features of the fluctuations. We also present a quasi-analytic explanation to the relation between ϕ and the error in synchrony.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号