首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   6篇
  国内免费   1篇
化学   358篇
晶体学   5篇
力学   8篇
数学   40篇
物理学   299篇
  2020年   5篇
  2018年   6篇
  2017年   10篇
  2016年   9篇
  2014年   11篇
  2013年   63篇
  2012年   45篇
  2011年   35篇
  2010年   20篇
  2009年   24篇
  2008年   36篇
  2007年   27篇
  2006年   30篇
  2005年   20篇
  2004年   21篇
  2003年   15篇
  2002年   20篇
  2001年   13篇
  2000年   16篇
  1999年   13篇
  1998年   4篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   10篇
  1988年   4篇
  1987年   8篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1978年   4篇
  1976年   6篇
  1975年   5篇
  1974年   6篇
  1973年   9篇
  1970年   4篇
  1966年   6篇
  1963年   4篇
  1962年   9篇
  1961年   7篇
  1960年   10篇
  1959年   13篇
  1958年   24篇
  1957年   8篇
  1953年   4篇
  1930年   3篇
排序方式: 共有710条查询结果,搜索用时 46 毫秒
101.
The ground state of a double-exchange model for orbitally degenerate e(g) electrons with Jahn-Teller lattice coupling and weak disorder is found to be spatially inhomogeneous near half filling. Using a real-space Monte Carlo method we show that doping the half-filled orbitally ordered insulator leads to the appearance of hole-rich disordered regions in an orbitally ordered environment. The doping driven orbital order to disorder transition is accompanied by the emergence of metallic behavior. We present results on transport and optical properties along with spatial patterns for lattice distortions and charge densities, providing a basis for an overall understanding of the low-doping phase diagram of La1 - xCaxMnO3.  相似文献   
102.
Isotope effect on the thermal conductivity of boron nitride nanotubes   总被引:1,自引:0,他引:1  
We have measured the temperature-dependent thermal conductivity kappa(T) of individual multiwall boron nitride nanotubes using a microfabricated test fixture that allows direct transmission electron microscopy characterization of the tube being measured. kappa(T) is exceptionally sensitive to isotopic substitution, with a 50% enhancement in kappa(T) resulting for boron nitride nanotubes with 99.5% 11B. For isotopically pure boron nitride nanotubes, kappa rivals that of carbon nanotubes of similar diameter.  相似文献   
103.
At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg antiferromagnet on a simple cubic lattice with competing first and second neighbor exchanges (J 1 and J 2) is investigated using the non-linear spin wave theory. We find existence of two phases: a two sublattice Néel phase for small J 2 (AF), and a collinear antiferromagnetic phase at large J 2 (CAF). We obtain the sublattice magnetizations and ground state energies for the two phases and find that there exists a first order phase transition from the AF-phase to the CAF-phase at the critical transition point, p c =0.56 or J 2/J 1=0.28. We also show that the quartic 1/S corrections due spin-wave interactions enhance the sublattice magnetization in both the phases which causes the intermediate paramagnetic phase predicted from linear spin wave theory to disappear.  相似文献   
104.
We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.  相似文献   
105.
We study real-space condensation in a broad class of stochastic mass transport models. We show that the steady state of such models has a pair-factorized form which generalizes the standard factorized steady states. The condensation in this class of models is driven by interactions which give rise to a spatially extended condensate that differs fundamentally from the previously studied examples. We present numerical results as well as a theoretical analysis of the condensation transition and show that the criterion for condensation is related to the binding-unbinding transition of solid-on-solid interfaces.  相似文献   
106.
The application of biomolecular magnetic resonance imaging becomes increasingly important in the context of early cartilage changes in degenerative and inflammatory joint disease before gross morphological changes become apparent. In this limited technical report, we investigate the correlation of MRI T1, T2 and T1ρ relaxation times with quantitative biochemical measurements of proteoglycan and collagen contents of cartilage in close synopsis with histologic morphology. A recently developed MRI sequence, T1ρ, was able to detect early intracartilaginous degeneration quantitatively and also qualitatively by color mapping demonstrating a higher sensitivity than standard T2-weighted sequences. The results correlated highly with reduced proteoglycan content and disrupted collagen architecture as measured by biochemistry and histology. The findings lend support to a clinical implementation that allows rapid visual capturing of pathology on a local, millimeter level. Further information about articular cartilage quality otherwise not detectable in vivo, via normal inspection, is needed for orthopedic treatment decisions in the present and future.  相似文献   
107.
In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l0-norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l1-norm as a surrogate for the l0-norm and the non-convex Schatten-q norm (0 < q ≤ 1) as a surrogate for the rank of matrix. Following past research in sparse recovery, we know that non-convex lp-norm (0 < p ≤ 1) is a better substitute for the NP hard l0-norm than the convex l1-norm. Motivated by these studies, we propose improvements over the previous studies by replacing the l1-norm sparsity penalty by the lp-norm. Thus, we reconstruct the dynamic MRI sequence by solving a least squares minimization problem regularized by lp-norm as the sparsity penalty and Schatten-q norm as the low-rank penalty. There are no efficient algorithms to solve the said problems. In this paper, we derive efficient algorithms to solve them. The experiments have been carried out on Dynamic Contrast Enhanced (DCE) MRI datasets. Both quantitative and qualitative analysis indicates the superiority of our proposed improvement over the existing methods.  相似文献   
108.
Ferritic steel with compositions 83.0Fe–13.5Cr–2.0Al–0.5Ti (alloy A), 79.0Fe–17.5Cr–2.0Al–0.5Ti (alloy B), 75.0Fe–21.5Cr–2.0Al–0.5Ti (alloy C) and 71.0Fe–25.5Cr–2.0Al–0.5Ti (alloy D) (all in wt%) each with a 1.0?wt% nano-Y2O3 dispersion were synthesized by mechanical alloying and consolidated by pulse plasma sintering at 600, 800 and 1000°C using a 75-MPa uniaxial pressure applied for 5?min and a 70-kA pulse current at 3?Hz pulse frequency. X-ray diffraction, scanning and transmission electron microscopy and energy disperse spectroscopy techniques have been used to characterize the microstructural and phase evolution of all the alloys at different stages of mechano-chemical synthesis and consolidation. Mechanical properties in terms of hardness, compressive strength, yield strength and Young's modulus were determined using a micro/nano-indenter and universal testing machine. All ferritic alloys recorded very high levels of compressive strength (850–2850?MPa), yield strength (500–1556?MPa), Young's modulus (175–250?GPa) and nanoindentation hardness (9.5–15.5?GPa), with up to 1–1.5 times greater strength than other oxide dispersion-strengthened ferritic steels (<1200?MPa). These extraordinary levels of mechanical properties can be attributed to the typical microstructure of uniform dispersion of 10–20-nm Y2Ti2O7 or Y2O3 particles in a high-alloy ferritic matrix.  相似文献   
109.
Complex random states have the statistical properties of the Gaussian and circular unitary ensemble eigenstates of random matrix theory. Even though their components are correlated by the normalization constraint, it is nevertheless possible to derive compact analytic formulas for their extreme values' statistical properties for all dimensionalities. The maximum intensity result slowly approaches the Gumbel distribution even though the variables are bounded, whereas the minimum intensity result rapidly approaches the Weibull distribution. Since random matrix theory is conjectured to be applicable to chaotic quantum systems, we calculate the extreme eigenfunction statistics for the standard map with parameters at which its classical map is fully chaotic. The statistical behaviors are consistent with the finite-N formulas.  相似文献   
110.
The thermal conductance of individual single crystalline silicon nanowires with diameters less than 30 nm has been measured from 20 to 100 K. The observed thermal conductance shows unusual linear temperature dependence at low temperatures, as opposed to the T3 dependence predicted by the conventional phonon transport model. In contrast to previous models, the present study suggests that phonon-boundary scattering is highly frequency dependent, and ranges from nearly ballistic to completely diffusive, which can explain the unexpected linear temperature dependence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号