首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   9篇
化学   233篇
力学   1篇
数学   9篇
物理学   22篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   13篇
  2011年   20篇
  2010年   11篇
  2009年   13篇
  2008年   21篇
  2007年   15篇
  2006年   32篇
  2005年   27篇
  2004年   16篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1996年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1965年   2篇
  1964年   2篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1955年   1篇
  1954年   1篇
  1943年   1篇
  1924年   1篇
  1923年   1篇
  1909年   1篇
排序方式: 共有265条查询结果,搜索用时 93 毫秒
121.
A new generation of plastic transistors consisting primarily of light and flexible organic materials requires new fabrication methods which combine low‐temperature, solution‐phase processing with precise control in the nanometer range over the component dimensions. Ultrathin silicon oxide films, which serve as gate dielectric layers in these transistors, were recently grown at room temperature from polymer precursor films by a novel layer‐by‐layer deposition/oxidation process.

  相似文献   

122.
The interaction of biocompatible, exponentially grown films composed of poly‐L ‐lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non‐aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near‐infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.  相似文献   
123.
The structures of two antimicrobial peptides (arenicin Ar‐1 and its linear derivative C/S‐Ar‐1) are studied in different solutions and at the air–water interface using spectroscopic methods such as circular dichroism (CD) and infrared reflection absorption spectroscopy (IRRAS) as well as grazing incidence X‐ray diffraction (GIXD) and specular X‐ray reflectivity (XR). Both peptides exhibit similar structures in solution. In the buffer used for most of the experiments the main secondary structure elements are 22 % β‐turn, 38 % β‐sheet and 38 % random coil. The amphiphilic peptides are surface‐active and form a Gibbs monolayer at the air–buffer interface. The surface activity is drastically increased by increasing the ionic strength of the subphase. The β‐sheet layer is quite stable and can be compressed to higher surface pressures. This adsorption layer is very crystalline. Bragg peaks corresponding to an interstrand distance of 4.78 Å and to an end‐to‐end distance have been observed. This end‐to‐end distance can be connected with the observed differences in the layer thickness leading to the assumption that the peptides form a hairpin which is bended depending on the interactions with the counterions.  相似文献   
124.
The amyloid‐β peptide (Aβ) plays a central role in the mechanism of Alzheimer's disease, being the main constituent of the plaque deposits found in AD brains. Aβ amyloid formation and deposition are due to a conformational switching to a β‐enriched secondary structure. Our strategy to inhibit Aβ aggregation involves the re‐conversion of Aβ conformation by adsorption to nanoparticles. NPs were synthesized by sulfonation and sulfation of polystyrene, leading to microgels and latexes. Both polymeric nanostructures affect the conformation of Aβ inducing an unordered state. Oligomerization was delayed and cytotoxicity reduced. The proper balance between hydrophilic moieties and hydrophobic chains seems to be an essential feature of effective NPs.

  相似文献   

125.
Direct infusion electrospray ionization mass spectrometry in the negative ion mode (ESI(?)‐MS) was employed to discriminate among fractions arising from the distillation of fermented sugarcane juice during the production of cachaça, a typical Brazilian alcoholic beverage. Aliquots were collected in the course of distillation and their ESI(?)‐MS shown to be almost indistinguishable by a simple visual inspection. However, when the ESI(?)‐MS data were treated by the principal component analysis (PCA) and hierarchical clustering analysis (HCA) statistical methods, four major groups were clearly determined, the so‐called head (two distinct clusters), heart and tail fractions. Furthermore, the recognition of diagnostic ions (and their respective intensities) enabled a more confident establishment of the cutoff position (i.e. the initial and final points of each fraction). In conclusion, ESI‐MS, in conjunction with PCA or HCA approaches, proved to be a quite efficient method that allowed for a prompt characterization of each fraction derived from the distillation of brewed sugarcane. The results described herein can, therefore, be useful not only to optimize the production of cachaça but also to improve the quality of the final product. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
126.
The heme protein cytochrome c (Cyt-c), immobilized on polyelectrolyte multilayers on a silver electrode, was studied by stationary and time-resolved surface-enhanced resonance Raman (SERR) spectroscopy to probe the redox site structure and the mechanism and dynamics of the potential-dependent interfacial processes. The layers were built up by sequential adsorption of polycations (poly[ethylene imine] (PEI); polyallylamine hydrochloride (PAH)) and polyanions (poly[styrene sulfonate] (PSS)). All multilayers terminated by PSS electrostatically bind Cyt-c. On PEI/PSS coatings, Cyt-c is peripherally bound and fully redox-active. Due to the interfacial potential drop, the apparent redox potential is lowered by 40 mV compared to that in solution. The rate constant for the heterogeneous electron transfer (ET) of ca. 0.1 s(-1) is consistent with electron tunneling through largely ordered PEI/PSS layers. ET is coupled to a reversible conformational transition of Cyt-c that involves a change of the coordination pattern of the heme. Additional (PAH/PSS) double layers cause a broadening of the redox transition and a drastic negative shift of the redox potential, which is attributed to the formation of PSS/Cyt-c complexes. It is concluded that Cyt-c can effectively compete with PAH for binding of PSS, resulting in a rearrangement of the layered structure and a penetration of the PSS-bound Cyt-c into the PAH/PSS double layers. This conclusion is consistent with SERR intensity and quartz microbalance measurements. ET was found to be overpotential-independent and faster than that for PEI/PSS coatings, which is interpreted in terms of specific PSS/Cyt-c complexes serving as gates for the heterogeneous ET.  相似文献   
127.
We have demonstrated microcontact printing (muCP) of self-assembled monolayers in the millisecond regime. The contact formation and separation of the stamp and substrate was studied with high-speed video recordings. Using high ink concentrations and contact times as short as 1 ms, we printed monolayers of hexadecanethiol on Au, which served as a selective etch resist. High-speed muCP yields defect-free monolayers that are independent of the dimensions of the printed patterns, have high contrast between printed and unprinted areas, and enable perfect reproducibility of prints.  相似文献   
128.
129.
A systematic analysis of pressure-area isotherms and grazing incidence X-ray diffraction (GIXD) data of 22-methoxydocosan-1-ol (H3C-O-(CH2)22-OH, MDO), docosan-1-ol (H3C-(CH2)21-OH, DO), and docosyl methyl ether (H3C-(CH2)21-O-CH3, DME) monolayers on pure water between 10 and 35 degrees C is presented. All monolayers form fully condensed phases in the investigated temperature region. The GIXD data reveal that the monolayers exhibit the phase sequence -S at lower temperature and -LS at higher temperature. Phase diagrams have been established. Inserting a second hydrophilic group at the opposite end of the molecule (bipolar MDO) shifts the S/LS boundary to higher temperatures. All monolayers exhibit herringbone (HB) packing at lower temperatures. The "kink" in the isotherms observed at lower temperatures is replaced by a very small plateau region at higher temperatures. The entropy changes connected with this weak first-order tilting transition are much smaller compared with the first-order transition from liquid-expanded (LE) to condensed (LC). Additionally, this transition is endothermic in contrast to the LE/LC transition. The reason for the endothermic transition is the weaker positional correlation in the nontilted state compared with the tilted one. The appearance of the weak first-order endothermic transition can be connected with the changed phase sequence. X-ray photoelectron spectroscopy (XPS) measurements provide information about the polar group orientation. Considerations based on GIXD and XPS data as well as adhesion energy of the different terminal end groups lead to the conclusion that the hydroxyl group of the bipolar MDO is attached to the water surface while the methoxy group is in contact with air. The presented results show that the second hydrophilic group influences the monolayer properties in a mild way.  相似文献   
130.
The effects of ionic strength and solvent polarity on the equilibrium distribution of fluorescein (FL) and FITC-dextran between the interior of polyelectrolyte multilayer microcapsules filled with negatively charged strong polyelectrolyte and the bulk solution were systematically investigated. A negatively charged strong polyelectrolyte, poly(styrene sulfonate) (PSS), used for CaCO3 core fabrication, was entrapped inside the capsules. Due to the semipermeability of the capsule wall, a Donnan equilibrium between the inner solution within the capsules and the bulk solution was created. The equilibrium distribution of the negatively charged permeants was investigated by means of confocal laser scanning microscopy as a function of ionic strength and solvent polarity. The equilibrium distribution of the negatively charged permeants could be tuned by increasing the bulk ionic strength to decrease the Donnan potential. Decreasing the solvent polarity also could enhance the permeation of FL, which induces a sudden increase of permeation when the ethanol volume fraction was higher than 0.7. This is mainly attributed to the precipitation of PSS. A theoretical model combining the Donnan equilibrium and Manning counterion condensation was employed to discuss the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号