首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537801篇
  免费   6460篇
  国内免费   1248篇
化学   272642篇
晶体学   7680篇
力学   24813篇
综合类   13篇
数学   75670篇
物理学   164691篇
  2021年   3965篇
  2020年   4543篇
  2019年   4776篇
  2018年   12700篇
  2017年   13227篇
  2016年   12627篇
  2015年   6831篇
  2014年   9363篇
  2013年   21895篇
  2012年   20078篇
  2011年   29974篇
  2010年   19803篇
  2009年   19551篇
  2008年   27111篇
  2007年   29613篇
  2006年   17562篇
  2005年   20793篇
  2004年   16983篇
  2003年   15247篇
  2002年   13511篇
  2001年   14012篇
  2000年   10733篇
  1999年   8229篇
  1998年   6874篇
  1997年   6570篇
  1996年   6590篇
  1995年   5891篇
  1994年   5829篇
  1993年   5692篇
  1992年   6246篇
  1991年   6243篇
  1990年   6001篇
  1989年   5771篇
  1988年   5820篇
  1987年   5687篇
  1986年   5372篇
  1985年   7020篇
  1984年   7144篇
  1983年   5722篇
  1982年   5806篇
  1981年   5779篇
  1980年   5351篇
  1979年   5732篇
  1978年   5909篇
  1977年   5716篇
  1976年   5645篇
  1975年   5220篇
  1974年   5175篇
  1973年   5222篇
  1972年   3611篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

The main theoretical aspects of detonation decomposition of powerful mixed explosives with a negative oxygen balance accompanied by the formation of nanodiamonds (ultrafine-dispersed diamonds, UDDs) are described. The basic UDD synthesis parameters are considered, and the expediency of using trotyl-hexogen alloys is shown. The conditions of diamond phase conservation in the detonation products are specified. Various versions of industrial detonation synthesis of UDDs are considered. The most efficient technology of chemical cleaning of UDDs (with nitric acid at high temperatures and pressures) for producing UDDs with the highest purity is described.

  相似文献   
992.
Superhard nanodiamond-SiC ceramics are prepared by infiltrating liquid Si into porous nanodiamond compacts under pressure. Synthesized samples are 2.2 mm thick and 3–4 mm in diameter. The effect of particle size of dynamically synthesized nanodiamond powders on silicon infiltration and SiC phase formation is studied. It is established that silicon does not penetrate into the pores of nanodiamond powders if the original particle size is smaller than 0.5–1.0 μm. The critical pore size for infiltration is 100–200 nm. A study of the microstructure of the samples showed the presence of the nanometer-and submicron-scale SiC phase. The ultrasound velocities are measured in the prepared compacts, and the elastic moduli are calculated. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 4, 2004, pp. 734–736. Original Russian Text Copyright ? 2004 by Ekimov, Gromnitskaya, Mazalov, Pal’, Pichugin, Gierlotka, Palosz, Kozubowski.  相似文献   
993.
The terahertz absorption spectra of plasmon modes in a grid-gated double-quantum-well field-effect transistor structure is analyzed theoretically and numerically using the scattering matrix approach and is shown to faithfully reproduce strong resonant features of recent experimental observations of terahertz photo-conductivity in such a structure.  相似文献   
994.
Growth of thin Ti films on (100)W and the kinetics of their oxidation are studied using thermal-desorption spectroscopy and Auger electron spectroscopy. Titanium films grow nearly layer by layer on the (100)W face at room temperature. The activation energy for desorption of Ti atoms decreases from 5.2 eV for coverage θ=0.1 to 4.9 eV in a multilayer film. Oxidation of a thin (θ=6) titanium film starts with dissolution of oxygen atoms in its bulk to the limiting concentration for a given temperature, after which the film oxidizes to TiO, with the TiO2 oxide starting to grow when exposure of the film to oxygen is prolonged. The thermal desorption of oxides follows zero-order kinetics and is characterized by desorption activation energies of 5.1 (TiO) and 5.9 eV (TiO2).  相似文献   
995.
996.
Three types of transparency of a semiconductor superlattice, namely, self-induced, induced, and selective transparency, were studied. The conditions of their existence and the causes of their destruction were revealed. It was shown that the state of self-induced transparency, which is unstable in a harmonic field, can be stable in a biharmonic field.  相似文献   
997.
The history of the discovery of nanodiamond synthesis, the investigation of nanodiamond properties, and the application and organization of their production in the second half of the 20th century is expounded. It is noted that this history is unique, since nanodiamond synthesis was discovered in the USSR three times over 19 years: first by K.V. Volkov, V.V. Danilenko, and V.I. Elin at the VNIITF (Snezhinsk) in 1963 and then, in 1982, by A.M. Staver and A.I. Lyamkin at the Institute of Hydrodynamics, Siberian Division, Academy of Sciences of the USSR (Novosibirsk), and by G.I. Savvakin at the Institute of Problems of Materials Science, Academy of Sciences of the UkSSR (Kiev). All of these researchers discovered nanodiamond synthesis accidentally while studying diamond synthesis by shock compression of nondiamond carbon modifications in blast chambers. The priority of work by Russian scientists in this field is demonstrated.  相似文献   
998.
The states of electron-hole pairs in spherical silicon nanocrystals are theoretically studied using the “multiband” effective-mass approximation in the limit of an infinitely high potential barrier at the boundary. The degeneracy of the states at the top of the valence band is taken into account in the spherical approximation, and the ellipsoidal character of the electronic spectrum in the conduction band is allowed for. Coulomb interaction-induced corrections to the energy of an electron-hole pair are found.  相似文献   
999.
1000.
For either of the two reflection spectra of cadmium difluoride that are known from experiments, a complete set of the fundamental optical functions is calculated in the energy range 4–45 eV with the Kramers-Kronig relationships. The basic features of the optical spectra are established, and a hypothesis for their origin is suggested based on the known theoretical results for the band structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号