首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   96篇
  国内免费   4篇
化学   722篇
晶体学   1篇
力学   16篇
数学   83篇
物理学   104篇
  2023年   31篇
  2022年   31篇
  2021年   49篇
  2020年   71篇
  2019年   80篇
  2018年   29篇
  2017年   19篇
  2016年   73篇
  2015年   52篇
  2014年   35篇
  2013年   66篇
  2012年   47篇
  2011年   60篇
  2010年   25篇
  2009年   16篇
  2008年   34篇
  2007年   20篇
  2006年   28篇
  2005年   25篇
  2004年   15篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   8篇
  1999年   6篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1992年   4篇
  1991年   4篇
  1988年   2篇
  1985年   4篇
  1984年   5篇
  1982年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1934年   2篇
  1932年   2篇
  1931年   2篇
  1930年   2篇
  1929年   1篇
  1928年   2篇
  1919年   1篇
  1913年   1篇
  1894年   1篇
排序方式: 共有926条查询结果,搜索用时 78 毫秒
901.
We have studied the exfoliation and dispersion of hexabenzocoronene (HBC) in 28 different solvents. We see a wide range of dispersed concentrations and aggregation states, all of which can be related to the solvent properties. To a first approximation, the dispersed concentration is maximized for solvents with Hildebrand solubility parameter close to 21 MPa(1/2), similar to graphitic materials such as nanotubes and graphene. We have also studied the concentration dependence of the absorbance and photoluminescence of HBC for both a good solvent, cyclohexyl pyrrolidone (CHP), and a poor solvent, tetrahydrofuran (THF). In both cases, we observe features that can be associated with either individual molecules or aggregates, allowing us to establish metrics both for aggregate and individual molecule content. While the aggregate content always increases with concentration, good solvents disperse individual molecules at relatively high concentrations while poor solvents display aggregation even at low concentrations. Using these metrics, we determine that large populations of individual molecules are present at low concentrations in certain solvents with Hildebrand solubility parameters close to 21 MPa(1/2). However, the aggregation state of HBC is considerably more sensitive to solvent Hildebrand parameter for halogenated solvents than for amide solvents. We find a combination of high overall concentrations and large populations of individual molecules in four solvents: cyclohexyl pyrrolidone, 1-chloronaphthalene, 1-bromonaphthalene, and 1,2,4-trichlorobenzene. Scanning tunnelling microscopy (STM) measurements show the formation of self-assembled monolayers at the interface between a HBC-solvent dispersion and a highly oriented pyrolytic graphite (HOPG) substrate. Similar structures were observed on ultrathin supports by aberration-corrected transmission electron microscopy (TEM). Also observed were graphitic objects of size ~1 nm consistent with monomers or aggregated stacks of very few monomers. We believe this is strong evidence of the presence of individual molecules in dispersions prepared with appropriate solvents.  相似文献   
902.
We present detailed studies of potassium doping in PbTe(1-y)Se(y) (y = 0, 0.15, 0.25, 0.75, 0.85, 0.95, and 1). It was found that Se increases the doping concentration of K in PbTe as a result of the balance of electronegativity and also lowers the lattice thermal conductivity because of the increased number of point defects. Tuning the composition and carrier concentration to increase the density of states around the Fermi level results in higher Seebeck coefficients for the two valence bands of PbTe(1-y)Se(y). Peak thermoelectric figure of merit (ZT) values of ~1.6 and ~1.7 were obtained for Te-rich K(0.02)Pb(0.98)Te(0.75)Se(0.25) at 773 K and Se-rich K(0.02)Pb(0.98)Te(0.15)Se(0.85) at 873 K, respectively. However, the average ZT was higher in Te-rich compositions than in Se-rich compositions, with the best found in K(0.02)Pb(0.98)Te(0.75)Se(0.25). Such a result is due to the improved electron transport afforded by heavy K doping with the assistance of Se.  相似文献   
903.
We introduce a background-free real-time detection scheme capable of recognizing low-index nanoparticles such as single viruses in water. The method is based on interferometrically measuring the electromagnetic field amplitude of the scattered light. A split detector is used to generate a background-free signal that renders unprecedented sensitivity for small particles. In its current configuration the sensor is capable of detecting low-index particles in water down to 10 nm in radius or single gold particles as small as 5 nm. We demonstrate the detection of such small particles in a microfluidic system with a time resolution of 1 ms and we discuss the theoretical limits of this novel detection scheme.  相似文献   
904.
We present a method of producing single attosecond pulses by high-harmonic generation with multicycle driver laser pulses. This can be achieved by tailoring the driving pulse so that attosecond pulses are produced only every full cycle of the oscillating laser field rather than every half-cycle. It is shown by classical and quantum-mechanical model calculations that even a minor addition (1%) of phase-locked second-harmonic light to the 800 nm fundamental driver pulse for high-harmonic generation leads to a major (15%) difference in the maximum kinetic energies of the recombining electrons in adjacent half-cycles.  相似文献   
905.
In the present study, we used 2-D differential gel electrophoresis (2-D DIGE) and MS to screen biomarker candidates in serum samples obtained from 39 patients with breast cancer and 35 controls. First, we pooled the serum samples matched with age and menopausal status. Then, we depleted the two most abundant proteins albumin and IgG by immunoaffinity chromatography under partly denaturing conditions in order to enrich low-abundance proteins and proteins with low molecular weight. Concentrated and desalted samples were labeled with three different CyDyes including one internal standard, pooled from all the samples, and separated with 2-D DIGE in triplicate experiments. Biological variations of the protein expression level were analyzed with DeCyder software and evaluated for reproducibility and statistical significance. The profile of differentially expressed protein spots between patients and controls revealed proapolipoprotein A-I, transferrin, and hemoglobin as up-regulated and three spots, apolipoprotein A-I, apolipoprotein C-III, and haptoglobin alpha2 as down-regulated in patients. Finally, routine clinical immunochemical reactions were used to validate selected candidate biomarkers by quantitative determination of specific proteins in all individual serum samples. The serum level of transferrin correlated well with the 2-D-DIGE results. However, the serum levels of apolipoprotein A-I and haptoglobin could not be detected with the clinical routine diagnostic tests. This demonstrated an advantage 2-D DIGE still has over other techniques. 2-D DIGE can distinguish between isoforms of proteins, where the overall immunochemical quantification does fail due to a lack of isoform-special antibodies.  相似文献   
906.
Calculated indirect NMR spin-spin coupling constants (3)J(P,C) and (2)J(P,H) were correlated with the local structure of the P-O...H-C linkage between the nucleic acid (NA) backbone phosphate and the H-C group(s) of a nucleic acid base. The calculations were carried out for selected nucleotides from the large ribosomal subunit (Ban et al. Science 2000, 289, 905) with the aim of identifying NMR parameters suitable for detection of certain noncanonical RNA structures. As calculations in the model system, dimethyl-phosphate-guanine, suggest, the calculated indirect spin-spin couplings across the linkage are sensitive to the mutual orientation and distance between the phosphate and nucleic acid base. A short distance between the nucleic acid base and phosphate group and the angles C...P-O and P...C-H smaller than 50 degrees are prerequisites for a measurable spin-spin interaction of either coupling (|J| > 1 Hz). A less favorable arrangement of the P-O...H-C motif, e.g., in nucleotides of the canonical A-RNA, results in an effective dumping of both spin-spin interactions and insignificant values of the NMR coupling constants. The present work indicates that quantum chemical calculations of the indirect spin-spin couplings across the P-O...H-C motif can help detect some rare but important backbone topologies, as seen for example in the reverse kink-turn. Measuring of (3)J(P,C) and (2)J(P,H) couplings can therefore provide critical constraints on the NA base and phosphate geometry and help to determine the structure of NAs.  相似文献   
907.
The structure determination of membrane proteins is one of the most challenging applications of solution NMR spectroscopy. The paucity of distance information available from the highly deuterated proteins employed requires new approaches in structure determination. Here we demonstrate that significant improvement in the structure accuracy of the membrane protein OmpA can be achieved by refinement with residual dipolar couplings (RDCs). The application of charged polyacrylamide gels allowed us to obtain two alignments and accurately measure numerous heteronuclear dipolar couplings. Furthermore, we have demonstrated that using a large set of RDCs in the refinement can yield a structure with 1 A rms deviation to the backbone of the high-resolution crystal structure. Our simulations with various data sets indicate that dipolar couplings will be critical for obtaining accurate structures of membrane proteins.  相似文献   
908.
A major challenge for the structure determination of integral membrane proteins by solution NMR spectroscopy is the limited number of NOE restraints in these systems stemming from extensive deuteration. Paramagnetic relaxation enhancement (PRE) by means of nitroxide spin-labels can provide valuable long-range distance information but, in practice, has limits in its application to membrane proteins because spin-labels are often incompletely reduced in highly apolar environments. Using the integral membrane protein OmpA as a model system, we introduce a method of parallel spin-labeling with paramagnetic and diamagnetic labels and show that distances in the range 15-24 Angstroms can be readily determined. The protein was labeled at 11 water-exposed and lipid-covered sites, and 320 PRE distance restraints were measured. The addition of these restraints resulted in significant improvement of the calculated backbone structure of OmpA. Structures of reasonable quality can even be calculated with PRE distance restraints only, i.e., in the absence of NOE distance restraints.  相似文献   
909.
This Note outlines a new moment method to solve the kinetic spray equation, which is the basic mathematical model used to predict the behaviour of polydisperse sprays. The method was successfully applied to the test-cases of spray-wall impingement and crossing of two spray jets that were affected by the Stokes drag force. Lagrangian computations of the same test-cases were used as reference solutions. To cite this article: L. Schneider et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).  相似文献   
910.
The classical route to the PMe3-stabilised polycyclic aromatic hydrocarbon (PAH)-substituted diborenes B2Ar2(PMe3)2 (Ar = 9-phenanthryl 7-Phen; Ar = 1-pyrenyl 7-Pyr) via the corresponding 1,2-diaryl-1,2-dimethoxydiborane(4) precursors, B2Ar2(OMe)2, is marred by the systematic decomposition of the latter to BAr(OMe)2 during reaction workup. Calculations suggest this results from the absence of a second ortho-substituent on the boron-bound aryl rings, which enables their free rotation and exposes the B–B bond to nucleophilic attack. 7-Phen and 7-Pyr are obtained by the reduction of the corresponding 1,2-diaryl-1,2-dichlorodiborane precursors, B2Ar2Cl2(PMe3)2, obtained from the SMe2 adducts, which are synthesised by direct NMe2–Cl exchange at B2Ar2(NMe2)2 with (Me2S)BCl3. The low-lying π* molecular orbitals (MOs) located on the PAH substituents of 7-Phen and 7-Pyr intercalate between the B–B-based π and π* MOs, leading to a relatively small HOMO–LUMO gap of 3.20 and 2.72 eV, respectively. Under vacuum or at high temperature 7-Phen and 7-Pyr undergo intramolecular hydroarylation of the B Created by potrace 1.16, written by Peter Selinger 2001-2019 B bond to yield 1,2-dihydronaphtho[1,8-cd][1,2]diborole derivatives. Hydrogenation of 7-Phen, 7-Pyr and their 9-anthryl and mesityl analogues III and II, respectively, results in all cases in splitting of the B–B bond and isolation of the monoboranes (Me3P)BArH2. NMR-spectroscopic monitoring of the reactions, solid-state structures of isolated reaction intermediates and computational mechanistic analyses show that the hydrogenation of the three PAH-substituted diborenes proceeds via a different pathway to that of the dimesityldiborene. Rather than occurring exclusively at the B–B bond, hydrogenation of 7-Ar and III proceeds via a hydroarylated intermediate, which undergoes one B–B bond-centered H2 addition, followed by hydrogenation of the endocyclic B–C bond resulting from hydroarylation, making the latter effectively reversible.

In contrast to classical B–B bond-centred diborene hydrogenation, polycyclic aromatic hydrocarbon-substituted diborenes first undergo thermal intramolecular hydroarylation, followed by hydrogenation of the remaining B–B and endocyclic B–C bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号