首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5639篇
  免费   239篇
  国内免费   43篇
化学   3965篇
晶体学   35篇
力学   136篇
数学   1066篇
物理学   719篇
  2023年   41篇
  2022年   72篇
  2021年   162篇
  2020年   105篇
  2019年   128篇
  2018年   106篇
  2017年   82篇
  2016年   192篇
  2015年   174篇
  2014年   203篇
  2013年   345篇
  2012年   397篇
  2011年   442篇
  2010年   285篇
  2009年   288篇
  2008年   355篇
  2007年   371篇
  2006年   341篇
  2005年   329篇
  2004年   241篇
  2003年   178篇
  2002年   181篇
  2001年   76篇
  2000年   60篇
  1999年   55篇
  1998年   42篇
  1997年   46篇
  1996年   71篇
  1995年   40篇
  1994年   38篇
  1993年   37篇
  1992年   45篇
  1991年   33篇
  1990年   20篇
  1989年   28篇
  1988年   22篇
  1987年   21篇
  1986年   25篇
  1985年   35篇
  1984年   26篇
  1983年   22篇
  1982年   29篇
  1981年   17篇
  1980年   20篇
  1979年   15篇
  1978年   11篇
  1977年   7篇
  1975年   8篇
  1974年   7篇
  1971年   6篇
排序方式: 共有5921条查询结果,搜索用时 15 毫秒
941.
942.
Neutron diffraction data with high real-space resolution are reported for an extensive series of cesium germanate glasses with 2, 5, 10, 15, 18, 21, 25, and 30 mol % Cs(2)O, and also for pure GeO(2) in its vitreous, quartz, and rutile forms. The results for pure GeO(2) show that neutron diffraction can clearly identify an increase in the Ge-O coordination number above the tetrahedral value of four. The results for cesium germanate glasses give strong evidence that the Ge-O coordination number rises to a maximum of 4.36 +/- 0.03 for 18 mol % Cs(2)O and then declines. This behavior may be associated with the germanate anomaly in the thermophysical properties. A model is developed for the composition-dependence of the Ge-O coordination number, and according to this model the rise in the coordination number involves the formation of mostly GeO(5) units, rather than GeO(6) units. Our results also show that the low alkali anomaly is a longer range phenomenon, and is not associated with a preference for the formation of nonbridging oxygens for very low alkali oxide content.  相似文献   
943.
In the present work, the relation between the pre-exponential factor and the apparent activation energy of diffusion, ln D(0) = alpha + betaE(D), so-called compensation effect, is re-examined and critically discussed for diffusion of gases in rubbery and glassy polymers. In principle, the above equation could be derived from the enthalpy-entropy compensation in the framework of the transition state theory. However, one should consider the influence of the jump length term contained in the pre-exponential factor, which may be affected by permeating species and polymer properties. We found that parameter alpha depends on penetrant size and polymer properties, such as local chain mobility and free volume. This can be interpreted by the fact that the jump length is affected by both penetrant and polymer properties. Finally, methods for estimating the jump length are discussed.  相似文献   
944.
The population of the lowest triplet state of thymine after near-UV irradiation has been established, on the basis of CASPT2//CASSCF quantum chemical calculations, to take place via three distinct intersystem crossing mechanisms from the initially populated singlet bright 1pipi* state. Two singlet-triplet crossings have been found along the minimum-energy path for ultrafast decay of the singlet state at 4.8 and 4.0 eV, involving the lowest 3npi* and 3pipi* states, respectively. Large spin-orbit coupling elements predict efficient intersystem crossing processes in both cases. Another mechanism involving energy transfer from the lowest 1npi* state with much larger spin-orbit coupling terms can also be proposed. The wavelength dependence measured for the triplet quantum yield of pyrimidine nucleobases is explained by the location and accessibility of the singlet-triplet crossing regions.  相似文献   
945.
Mesoscopic simulations of linear and 3-arm star poly(styrene)-poly(isoprene) block copolymers was performed using a representation of the polymeric molecular structures by means of Gaussian models. The systems were represented by a group of spherical beads connected by harmonic springs; each bead corresponds to a segment of the block chain. The quantitative estimation for the bead-bead interaction of each system was calculated using a Flory-Huggins modified thermodynamical model. The Gaussian models together with dissipative particle dynamics (DPD) were employed to explore the self-organization process of ordered structures in these polymeric systems. These mesoscopic simulations for linear and 3-arm star block copolymers predict microphase separation, order-disorder transition, and self-assembly of the ordered structures with specific morphologies such as body-centered-cubic (BCC), hexagonal packed cylinders (HPC), hexagonal perforated layers (HPL), alternating lamellar (LAM), and ordered bicontinuous double diamond (OBDD) phases. The agreement between our simulations and experimental results validate the Gaussian chain models and mesoscopic parameters used for these polymers and allow describing complex macromolecular structures of soft condensed matter with large molecular weight at the statistical segment level.  相似文献   
946.
CE methods for the determination of non-protein amino acids in foods   总被引:1,自引:0,他引:1  
In addition to the 20 amino acids universally distributed as protein constituents in living organisms, there are other amino acids of non-protein origin that can be found in foods. The determination of these non-protein amino acids is interesting since they can be indicative of the quality and safety of foods. This work presents for the first time an updated and comprehensive review devoted to show the possibilities of capillary electrophoresis for the determination of non-protein amino acids in food samples. The results reported have been classified according to the chemical structure of the non-protein amino acid studied. Separation conditions as well as detection systems used have been detailed since most of these amino acidic compounds do not possess chromophore groups detectable by conventional UV-Vis detection, being in this case necessary a previous derivatization step. Finally, the application of microchip electrophoresis to the determination of non-protein amino acids in foodstuffs is also included in this review.  相似文献   
947.
In this tutorial review we describe some studies concerning liquid crystal dendritic polymers. We have chosen to present several representative examples that illustrate the diverse kinds of LC dendritic structures, namely: dendrimers, dendrons, dendronized polymers and hyperbranched polymers. We review their synthesis, mesogenic properties and the way that they are arranged to form supramolecular liquid crystal assemblies.  相似文献   
948.
Two naturally occurring 11-nordrimanes were synthesized, and their (1)H and (13)C NMR spectra were unambiguously assigned in full for the first time.  相似文献   
949.
A new group of porphyrin-fullerene dyads with an azobenzene linker was synthesized, and the photochemical and photophysical properties of these materials were investigated using steady-state and time-resolved spectroscopic methods. The electrochemical properties of these compounds were also studied in detail. The synthesis involved oxidative heterocoupling of free base tris-aryl-p-aminophenyl porphyrins with a p-aminophenylacetal, followed by deprotection to give the aldehyde, and finally Prato 1,3-dipolar azomethineylide cycloaddition to C60. The corresponding Zn(II)-porphyrin (ZnP) dyads were made by treating the free base dyads with zinc acetate. The final dyads were characterized by their 1H NMR, mass, and UV-vis spectra. 3He NMR was used to determine if the products are a mixture of cis and trans stereoisomers, or a single isomer. The data are most consistent with the isolation of only a single configurational isomer, assigned to the trans (E) configuration. The ground-state UV-vis spectra are virtually a superimposition of the spectral features of the individual components, indicating there is no interaction of the fullerene (F) and porphyrin (H2P/ZnP) moieties in the ground state. This conclusion is supported by the electrochemical data. The steady-state and time-resolved fluorescence spectra indicate that the porphyrin fluorescence in the dyads is very strongly quenched at room temperature in the three solvents studied: toluene, tetrahydrofuran (THF), and benzonitrile (BzCN). The fluorescence lifetimes of the dyads in all solvents are sharply reduced compared to those of H2P and ZnP standards. In toluene, the lifetimes of the free base dyads are 600-790 ps compared to 10.1 ns for the standard, while in THF and BzCN the dyad lifetimes are less than 100 ps. For the ZnP dyads, the fluorescence lifetimes were 10-170 ps vs 2.1-2.2 ns for the ZnP references. The mechanism of the fluorescence quenching was established using time-resolved transient absorption spectroscopy. In toluene, the quenching process is singlet-singlet energy transfer (k approximately 10(11) s-1) to give C60 singlet excited states which decay with a lifetime of 1.2 ns to give very long-lived C60 triplet states. In THF and BzCN, quenching of porphyrin singlet states occurs at a similar rate, but now by electron transfer, to give charge-separated radical pair (CSRP) states, which show transient absorption spectra very similar to those reported for other H2P-C60 and ZnP-C60 dyad systems. The lifetimes of the CSRP states are in the range 145-435 ns in THF, much shorter than for related systems with amide, alkyne, silyl, and hydrogen-bonded linkers. Thus, both forward and back electron transfer is facilitated by the azobenzene linker. Nonetheless, the charge recombination is 3-4 orders of magnitude slower than charge separation, demonstrating that for these types of donor-acceptor systems back electron transfer is occurring in the Marcus inverted region.  相似文献   
950.
Aminoglycosides are clinically relevant antibiotics that participate in a large variety of molecular recognition processes involving different RNA and protein receptors. The 3-D structures of these policationic oligosaccharides play a key role in RNA binding and therefore determine their biological activity. Herein, we show that the particular NH2/NH3(+)/OH distribution within the antibiotic scaffold modulates the oligosaccharide conformation and flexibility. In particular, those polar groups flanking the glycosidic linkages have a significant influence on the antibiotic structure. A careful NMR/theoretical analysis of different natural aminoglycosides, their fragments, and synthetic derivatives proves that both hydrogen bonding and charge-charge repulsive interactions are at the origin of this effect. Current strategies to obtain new aminoglycoside derivatives are mainly focused on the optimization of the direct ligand/receptor contacts. Our results strongly suggest that the particular location of the NH2/NH3(+)/OH groups within the antibiotics can also modulate their RNA binding properties by affecting the conformational preferences and inherent flexibility of these drugs. This fact should also be carefully considered in the design of new antibiotics with improved activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号