首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   0篇
  国内免费   3篇
化学   64篇
力学   3篇
数学   9篇
物理学   29篇
  2022年   1篇
  2021年   2篇
  2015年   1篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1948年   1篇
  1936年   2篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
81.
Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.  相似文献   
82.
83.
84.
CIDNP (Chemically Induced Dynamic Nuclear Polarization) studies of the photoreduction of benzophenone by R-CH2-S-R' show evidence for the formation of vinylic deratives and adducts. The central intermediate in the reaction scheme is the radical pair R-CH-S-R' φ2-C-OHt. A study with selenides shows a different behaviour for these compounds.  相似文献   
85.
We present a detailed and complete calculation of the loop corrections to the mass difference $\Delta {{m_{B_d^0 } } \mathord{\left/ {\vphantom {{m_{B_d^0 } } {m_{B_d^0 } }}} \right. \kern-0em} {m_{B_d^0 } }}$ . We include charginos and scalar up quarks as well as gluinos and scalar down quarks on the relevant loop diagrams. We include the mixings of the charginos and of the scalar partners of the left and right handed quarks. We find that the gluino contribution to this quantity is important with respect to the chargino contribution only in a small part of phase space: mainly when the gluino mass is small (~100 GeV) and the symmetry-breaking parameterm S is below 300 GeV. This contribution is also important for very large values of tanβ (~50) irrespective of the other parameters. Otherwise, the chargino contribution dominates vastly and can be roughly as large as that of the Standard Model. We also present the contribution of the charged Higgs to the mass difference $\Delta {{m_{B_d^0 } } \mathord{\left/ {\vphantom {{m_{B_d^0 } } {m_{B_d^0 } }}} \right. \kern-0em} {m_{B_d^0 } }}$ in the casem b tanβ?m t cotβ. This last contribution can be larger than the Standard Model contribution for small values of the Higgs mass and small values of tanβ.  相似文献   
86.
87.
The determination of enzyme activity or inhibition in intact living cells is a problem in the development of inhibitors for intracellular proteases. The production of fluorescent protoporphyrin IX (PpIX) from the nonfluorescent (N)-Gly/Pro-5-aminolevulinic acid (ALA) substrates was used to evaluate the prolyl/glycyl-specific dipeptidylpeptidase IV (DPPIV)-like and prolyloligopeptidase (POP)-like activities of human cells. The results demonstrated that whereas POP-like activity could be attributed to the actual POP, the DPPIV-like activity could be related to actual DPPIV only in one colon cell line. In the other breast and colon cell lines, DPPIV-like activity was intracellular and displayed by other prolyl-specific aminopeptidases. Our experiments also demonstrated the involvement of glycyl-specific proteases in the processing of ALA precursors. These observations have important consequences for the development and evaluation of selective inhibitors for these enzymes.  相似文献   
88.
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).  相似文献   
89.
Journal of Nanoparticle Research - Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines. However, the problem of the large-scale...  相似文献   
90.
Radioactive waste cleanup and subsequent closure of waste storage tanks is currently underway at the Savannah river site, prompting the need to characterize the residual contents (heels) of the tanks. Occasionally, results from laboratory analyses indicate alternative sub-sampling strategies are needed, resulting in repetitive efforts to sample and analyze tank bottoms. The development of a system for in situ tank analyses using a radiometric probe, which could be lowered into a waste tank, could aid in identifying waste structures on tank bottoms requiring further sampling and characterization. Ideally, the probe would provide information for determining which structures were higher in concentrations of actinides and fission products characteristic of DOE high level waste (HLW) heels. Although only a limited set of isotopes can be measured directly without extensive radiochemical separations, the low-energy photon spectra of HLW do offer some intriguing possibilities for characterization using a radiometric probe. One possibility for obtaining a low-energy photon spectrum in the presence of high levels of interfering radiation would be to design a probe primarily based upon recently developed technology from Amptek Inc. Such a detector would be relatively insensitive to the high photon background, which would paralyze conventional gamma probes (i.e. sodium iodide) subjected to the same radiological conditions. The prototype detector is capable of successfully obtaining high resolution measurements at very high count rates (in excess of 500,000 counts per second). An overview of measurements obtained from various HLW samples using the prototype Amptek detector, as well as some additional detector technologies, which could enhance this prototype, will be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号