首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   6篇
  国内免费   2篇
化学   111篇
晶体学   1篇
数学   50篇
物理学   45篇
  2022年   4篇
  2021年   14篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   12篇
  2013年   25篇
  2012年   16篇
  2011年   19篇
  2010年   8篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
41.
Macroscopic pKa values were calculated for all compounds in the SAMPL6 blind prediction challenge, based on quantum chemical calculations with a continuum solvation model and a linear correction derived from a small training set. Microscopic pKa values were derived from the gas-phase free energy difference between protonated and deprotonated forms together with the Conductor-like Polarizable Continuum Solvation Model and the experimental solvation free energy of the proton. pH-dependent microstate free energies were obtained from the microscopic pKas with a maximum likelihood estimator and appropriately summed to yield macroscopic pKa values or microstate populations as function of pH. We assessed the accuracy of three approaches to calculate the microscopic pKas: direct use of the quantum mechanical free energy differences and correction of the direct values for short-comings in the QM solvation model with two different linear models that we independently derived from a small training set of 38 compounds with known pKa. The predictions that were corrected with the linear models had much better accuracy [root-mean-square error (RMSE) 2.04 and 1.95 pKa units] than the direct calculation (RMSE 3.74). Statistical measures indicate that some systematic errors remain, likely due to differences in the SAMPL6 data set and the small training set with respect to their interactions with water. Overall, the current approach provides a viable physics-based route to estimate macroscopic pKa values for novel compounds with reasonable accuracy.  相似文献   
42.
43.
A variety of carbohydrates, in particular polysaccharides can be subjected to chemical modification to obtain derivatives with amphiphilic properties, which enable biochemical or biological reactions at the polymer surface. In the present work, a polydisperse maltodextrin mixture of average molecular weight 3000 was coupled with 1,6-hexamethylenediamine (HMD) via reductive amination reaction. Resulting products were characterized by thermal analysis and positive nanoelectrospray quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Both thermal analysis and MS screening confirmed the formation of the HMD-polysaccharide coupling products. Moreover, HMD-linked polysaccharide chains containing 2 to 26 glucose building blocks were identified by nanoESI Q-TOF MS. MS/MS fragmentation using collision-induced dissociation (CID) at low ion acceleration energies provided strong evidence for HMD-maltodextrin linkage formation and the set of sequence ions diagnostic for the composition and structure of a HMD-linked chain containing 18 glucose residues.   相似文献   
44.
The perturbation of the generator of a Borel right process by a signed measure is investigated, using probabilistic and analytic potential theoretical methods. We establish a Feynman-Kac formula associated with measures charging no polar set and belonging to an extended Kato class. A main tool of this approach is the validity of a Khas’minskii Lemma for Stieltjes exponentials of positive left continuous additive functionals.   相似文献   
45.
The regio‐ and stereo‐specific addition of monoselenium monochloride to pseudogeminally substituted bispropargylic alcohols has been performed under high dilution conditions. The disproportionation reaction of selenium monochloride to selenium dichloride and triselenium dichloride leads to the corresponding divinylic mono‐ and tri‐selenides. The stereochemistry of the newly generated double bond was assigned as Z by 2D NMR experiments. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:126–130, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20586  相似文献   
46.
The present study deals with preparation and characterization of spinel mixed oxide systems NiM 2 III O4, where MIII?=?FeIII, CrIII. In order to obtain 50% NiFe2O4/50% SiO2 and 50% NiCr2O4/50% SiO2 nanocomposite, we have used a versatile route based on the thermal decomposition inside the SiO2 matrix, of some particular precursors, coordination compounds of the involved MII and MIII cations with dicarboxylate ligands. The ligands form in the redox reaction between metal nitrates mixture and 1,3-propanediol at the heating around 140?°C of the gels (tetraethylorthosilicate?Cmetal nitrates?C1,3-propanediol?Cwater). The as-obtained precursors, embedded in silica gels, have been characterized by FT-IR spectrometry and thermal analysis. Both precursors thermally decompose up to 350?°C leading to the formation of the corresponding metal oxides inside the silica matrix. X-ray diffraction of the annealed powders have evidenced the formation of NiFe2O4 starting with 600?°C, and NiCr2O4 starting with 400?°C. This behavior can be explained by the fact that, by thermal decomposition of the Fe(III) carboxylate at 300?°C, the spinelic phase ??-Fe2O3 is formed, which interacts with the NiO, forming the ferrite nuclei. By thermal decomposition of chromium carboxylate, a nonstoichiometric chromium oxide (Cr2O3+x ) is formed. In the range 380?C400?°C, Cr2O3+x turns into Cr2O3 which immediately interacts with NiO leading to the formation of nickel chromites nuclei inside the pores of silica matrix. Both spinels have been obtained as nanocrystalites homogenously dispersed as resulted from XRD and TEM data.  相似文献   
47.
All-atom molecular dynamics computer simulations were used to blindly predict the hydration free energies of a range of chloro-organic compounds as part of the SAMPL3 challenge. All compounds were parameterized within the framework of the OPLS-AA force field, using an established protocol to compute the absolute hydration free energy via a windowed free energy perturbation approach and thermodynamic integration. Three different approaches to deriving partial charge parameters were pursued: (1) using existing OPLS-AA atom types and charges with minor adjustments of partial charges on equivalent connecting atoms; (2) calculation of quantum mechanical charges via geometry optimization, followed by electrostatic potential (ESP) fitting, using Jaguar at the LMP2/cc-pVTZ(-F) level; and (3) via geometry optimization and CHelpG charges (Gaussian03 at the HF/6-31G* level), followed by two-stage RESP fitting. Protocol 3 generated the most accurate predictions with a root mean square (RMS) error of 1.2 kcal mol(-1) for the entire data set. It was found that the deficiency of the standard OPLS-AA parameters, protocol 1 (RMS error 2.4 kcal mol(-1) overall), was mostly due to compounds with more than three chlorine substituents on an aromatic ring. For this latter subset, the RMS errors were 1.4 kcal mol(-1) (protocol 3) and 4.3 kcal mol(-1) (protocol 1), respectively. We propose new OPLS-AA atom types for aromatic carbon and chlorine atoms in rings with ≥4 Cl-substituents that perform better than the best QM-based approach, resulting in an RMS error of 1.2 kcal mol(-1) for these difficult compounds.  相似文献   
48.
A new approach based on microemulsions formulated with at least 85% water and minority components consisting of oil (limonene) and surfactant (anionic and nonionic) is demonstrated for the first time to be effective for flooding wood's complex capillary structure. The formulation of the microemulsion was based on phase behavior scans of Surfactant-Oil-Water systems (SOWs) and the construction of pseudo-ternary diagrams to localize thermodynamically stable one-phase emulsion systems with different composition, salinity and water-to-oil ratios. Wicking and fluid penetration isotherms followed different kinetic regimes and indicated enhanced performance relative to that of the base fluids (water, oil or surfactant solutions). The key properties of microemulsions to effectively penetrate the solid structure are discussed; microemulsion formulation and resultant viscosity are found to have a determining effect in the extent of fluid uptake. The solubilization of cell wall components is observed after microemulsion impregnation. Thus, the microemulsion can be tuned not only to effectively penetrate the void spaces but also to solubilize hydrophobic and hydrophilic components. The concept proposed in this research is expected to open opportunities in fluid sorption in fiber systems for biomass pretreatment, and delivery of hydrophilic or lipophilic moieties in porous, lignocellulosics.  相似文献   
49.
During and following the processing of a plant’s raw material, considerable amounts are wasted, composted, or redistributed in non-alimentary sectors for further use (for example, some forms of plant waste contribute to biofuel, bioethanol, or biomass production). However, many of these forms of waste still consist of critical bioactive compounds used in the food industry or medicine. Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders. The primary treatment is based on symptomatology alleviation and controlled dietary management. Thus, this review aimed to describe the possible relevance of molecules residing in plant waste that can be used to manage IBS and co-occurring symptoms. Significant evidence was found that many forms of fruit, vegetable, and medicinal plant waste could be the source of some molecules that could be used to treat or prevent stool consistency and frequency impairments and abdominal pain, these being the main IBS symptoms. While many of these molecules could be recovered from plant waste during or following primary processing, the studies suggested that enriched food could offer efficient valorization and prevent further changes in properties or stability. In this way, root, stem, straw, leaf, fruit, and vegetable pomaces were found to consist of biomolecules that could modulate intestinal permeability, pain perception, and overall gastrointestinal digestive processes.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号