首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1454篇
  免费   75篇
  国内免费   5篇
化学   1161篇
晶体学   7篇
力学   16篇
数学   166篇
物理学   184篇
  2024年   1篇
  2023年   16篇
  2022年   37篇
  2021年   42篇
  2020年   49篇
  2019年   34篇
  2018年   17篇
  2017年   25篇
  2016年   51篇
  2015年   54篇
  2014年   46篇
  2013年   74篇
  2012年   93篇
  2011年   121篇
  2010年   57篇
  2009年   49篇
  2008年   96篇
  2007年   108篇
  2006年   85篇
  2005年   89篇
  2004年   60篇
  2003年   66篇
  2002年   68篇
  2001年   13篇
  2000年   13篇
  1999年   5篇
  1998年   10篇
  1997年   7篇
  1996年   34篇
  1995年   22篇
  1994年   17篇
  1993年   11篇
  1992年   16篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1534条查询结果,搜索用时 288 毫秒
991.
Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg2+ ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg2+] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin.  相似文献   
992.
Carbon dioxide undergoes a Pd-catalyzed [3+2] cycloaddition with trimethylenemethane (TMM) under mild conditions (1 atm, 75 degrees C, 30 min) to produce a gamma-butyrolactone product in 63% yield, when the Pd-TMM complex is generated from 2-(acetoxymethyl)-3-(trimethylsilyl)propene. The reaction reported here is more rapid than the all-carbon [3+2] cycloaddition, and only the gamma-butyrolactone is produced in a competition experiment. With substituted substrates, the reaction is completely regioselective, producing the product derived from the kinetic Pd-TMM complex.  相似文献   
993.
994.
Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.  相似文献   
995.
It has been documented that 5-methylene-Meldrum's acid derivatives (1, 12 ) and their enols (2, 13) can undergo fragmentation to malonic anhydrides (4, 19 ), carboxyketenes (3, 16) and methyleneketene (5, 21 , 35 ), as well as cyclization to pyrrole-3-one and thiophene-3-one derivatives 11a,b (but not furan-3-ones 11c ) under the conditions of flash vacuum thermolysis (FVT). Here we report theoretical calculations at the B3LYP/6-311 + G(2d, p) and G3X(MP2) levels of theory, which allow a rationalization of these observations. The calculated activation barriers for these reactions are all of the order of 37-40 kcal mol(-1). Hydroxyacetylenes (alkynols) 7 are sometimes observed in FVT reactions of Meldrum's acid derivatives. Their formation is now explained as an FVT reaction of the carboxyketenes (e.g. 3-->7 and 32-->34) with a calculated activation barrier of ca. 39 kcal mol(-1). The cyclization of alkylamino- and alkylthio-substituted methyleneketenes 8a,b to pyrrolone and thiophenone derivatives 11a,b is found to be energetically very feasible under FVT conditions, and even in some cases in solution, with activation barriers of 33-39 kcal mol(-1). This cyclization takes place via the fleeting ylidic ketene intermediates 9a,b,25, and 37a,b, which exist in very shallow energy minima. Alkoxy-substituted methyleneketenes 8c do not cyclize in this manner due to the rather high, but in principle not impossible, activation barriers for the initial 1,4-H shifts to the ylidic ketenes 9c (ca. 47 kcal mol(-1)).  相似文献   
996.
Treatment of the ebnpa (N-2-(ethylthio)ethyl-N,N-bis((6-neopentylamino-2-pyridyl)methyl)amine) ligand with a molar equivalent amount of Cd(ClO(4))(2).5H(2)O in CH(3)CN followed by the addition of [Me(4)N]OH.5H(2)O yielded the cadmium hydroxide complex [(ebnpaCd)(2)(mu-OH)(2)](ClO(4))(2) (1). Complex 1 has a binuclear cation in the solid-state with secondary hydrogen-bonding and CH/pi interactions involving the ebnpa ligand. In acetonitrile, 1 forms a binuclear/mononuclear equilibrium mixture. The formation of a mononuclear species has been confirmed by conductance measurements of 1 at low concentrations. Variable temperature studies of the binuclear/mononuclear equilibrium provided the standard enthalpy and entropy associated with the formation of the monomer as DeltaH degrees = +31(2) kJ mol(-1) and DeltaS degrees = +108(8) J mol(-1) K(-1), respectively. Enhanced secondary hydrogen-bonding interactions involving the terminal Cd-OH moiety may help to stabilize the mononuclear complex. Treatment of 1 with CO(2) in acetonitrile results in the formation of a binuclear cadmium carbonate complex, [(ebnpaCd)(2)(mu-CO(3))](ClO(4))(2) (2).  相似文献   
997.
Gold-isocyanide complexes XAu(RNC) (X = halide, pseudohalide, R = alkyl, aryl) and water soluble gold-carbene complexes XAuC(NHPh)[MeN(CH(2)CH(2)O)(n)Me] (X = Cl, n = 1-11) have been prepared and evaluated as substrates for the direct laser writing of gold decoration onto ceramics.  相似文献   
998.
999.
Some of the most prominent "neutral losses" in peptide ion fragmentation are the loss of ammonia and water from N-terminal glutamine. These processes are studied by electrospray ionization mass spectrometry in singly- and doubly-protonated peptide ions undergoing collision-induced dissociation in a triple quadrupole and in an ion trap instrument. For this study, four sets of peptides were synthesized: (1) QLLLPLLLK and similar peptides with K replaced by R, H, or L, and Q replaced by a number of amino acids, (2) QLnK (n = 0, 1, 3, 5, 7, 9, 11), (3) QLnR (n = 0, 1, 3, 5, 7, 9), and (4) QLn (n = 1, 2, 3, 4, 8). The results for QLLLPLLLK and QLLLPLLLR show that the singly protonated ions undergo loss of ammonia and to a smaller extent loss of water, whereas the doubly protonated ions undergo predominant loss of water. The fast fragmentation next to P (forming the y5 ion) occurs to a larger extent than the neutral losses from the singly protonated ions but much less than the water loss from the doubly protonated ions. The results from these and other peptides show that, in general, when N-terminal glutamine peptides have no "mobile protons", that is, the number of charges on the peptide is no greater than the number of basic amino acids (K, R, H), deamination is the predominant neutral loss fragmentation, but when mobile protons are present the predominant process is the loss of water. Both of these processes are faster than backbone fragmentation at the proline. These results are rationalized on the basis of resonance stabilization of the two types of five-membered ring products that would be formed in the neutral loss processes; the singly protonated ion yields the more stable neutral pyrrolidinone ring whereas the doubly protonated ion yields the protonated aminopyrroline ring (see Schemes). The generality of these trends is confirmed by analyzing an MS/MS spectra library of peptides derived from tryptic digests of yeast. In the absence of mobile protons, glutamine deamination is the most rapid neutral loss process. For peptides with mobile protons, dehydration from glutamine is far more rapid than from any other amino acid. Most strikingly, end terminal glutamine is by far the most labile source of neutral loss in excess-proton peptides, but not highly exceptional when mobile protons are not available. In addition, rates of deamination are faster in lysine versus arginine C-terminus peptides and 20 times faster in positively charged than negatively charged peptides, demonstrating that these formal neutral loss reactions are not "neutral reactions" but depend on charge state and stability.  相似文献   
1000.
High-mobility group box 1 protein (HMGB1) is a nuclear component, but extracellularly it serves as a signaling molecule involved in acute and chronic inflammation, for example in sepsis and arthritis. The identification of HMGB1 inhibitors is therefore of significant experimental and clinical interest. We show that glycyrrhizin, a natural anti-inflammatory and antiviral triterpene in clinical use, inhibits HMGB1 chemoattractant and mitogenic activities, and has a weak inhibitory effect on its intranuclear DNA-binding function. NMR and fluorescence studies indicate that glycyrrhizin binds directly to HMGB1 (K(d) approximately 150 microM), interacting with two shallow concave surfaces formed by the two arms of both HMG boxes. Our results explain in part the anti-inflammatory properties of glycyrrhizin, and might direct the design of new derivatives with improved HMGB1-binding properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号