首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   34篇
  国内免费   22篇
化学   195篇
力学   19篇
综合类   1篇
数学   8篇
物理学   71篇
  2024年   4篇
  2023年   3篇
  2022年   12篇
  2021年   10篇
  2020年   14篇
  2019年   7篇
  2018年   5篇
  2017年   8篇
  2016年   18篇
  2015年   12篇
  2014年   8篇
  2013年   18篇
  2012年   18篇
  2011年   26篇
  2010年   20篇
  2009年   17篇
  2008年   20篇
  2007年   24篇
  2006年   12篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   7篇
  2001年   5篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有294条查询结果,搜索用时 31 毫秒
11.
The direct formic acid fuel cell is an emerging energy conversion device for which palladium is considered as the state‐of‐the‐art anode catalyst. In this communication, we show that the activity and stability of palladium for formic acid oxidation can be significantly enhanced using nickel phosphide (Ni2P) nanoparticles as a cocatalyst. X‐ray photoelectron spectroscopy (XPS) reveals a strong electronic interaction between Ni2P and Pd. A direct formic acid fuel cell incorporating the best Pd–Ni2P anode catalyst exhibits a power density of 550 mW cm?2, which is 3.5 times of that of an analogous device using a commercial Pd anode catalyst.  相似文献   
12.
李莹莹  王丁一  农骐郢  刘丽红  张蒙  梁勇  胡立刚  何滨  江桂斌 《色谱》2020,38(11):1316-1322
随着现场分析对于快速、便携和经济型检测的需求,分析仪器的便携化和微型化备受关注。3D打印技术的不断发展,将会极大推动小型化、便携式实验设备的开发和研制。分析仪器的微型化有助于促进资源不足地区在医疗现场、食品安全和环境污染等方面的现场监测。目前,用于蛋白质分离的凝胶电泳装置多为实验室用小型化分析仪器,可用于现场快速分离蛋白质的小型化仪器尚未见报道。该研究设计加工了一款便携式凝胶电泳装置,用于蛋白质的快速分离检测。首先,通过3D打印加工的凝胶电泳装置可在实验室内方便、快捷、低成本的复制。其次,通过对预染蛋白质相对分子质量标准的分离测试,对该系统结构进行优化。优化后该凝胶电泳装置电泳槽的尺寸仅为15 mm×20 mm×17 mm,采用3D打印技术可在5 h内加工完成,耗费打印材料10 mL。正负极所用电泳缓冲液共需4 mL,所使用的25 V锂电池可实现100 h左右的工作时间。装置优化后可实现蛋白质的快速高效分离。随后,在5种常用蛋白质相对分子质量标准的分离中,该装置与商业化平板凝胶电泳分离效果相当,同时具备更快的分离速度。该研究在便携式凝胶电泳装置的开发及其在蛋白质快速分离方面取得了初步成果,但在分离完成后立即对蛋白质进行定量分析以及更多实际样品的应用方面还需要进一步研究。  相似文献   
13.
Developing efficient powder catalysts for hydrogen evolution reaction (HER) in the acidic electrolyte is significant for hydrogen generation in the proton exchange membrane (PEM) water electrolysis technique. Herein, we demonstrated an efficient catalyst for HER in the acid media based on the graphene supported ruthenium telluride nanoparticles (RuTe2/Gr). The catalysts were easily fabricated by a facile microwave irradiation/thermal annealing approach, and orthorhombic RuTe2 crystals were found anchored over the graphene surface. The defective structure was demonstrated in the aberration‐corrected transmission electron microscopy images for RuTe2 crystals and graphene support. This catalyst required an overpotential of 72 mV to drive 10 mA cm?2 for HER when loading on the inert glass carbon electrode; Excellent catalytic stability in acidic media was also observed to offer 10 mA cm?2 for 10 hours. The Volmer‐Tafel mechanism was indicated on RuTe2/Gr catalyst by Tafel slope of 33 mV dec?1, similar to that of Pt/C catalysts. The high catalytic performance of RuTe2/Gr could be attributed to its high dispersion on the graphene surface, high electrical conductivity and low charge transfer resistance. This powder catalyst has potential application in the PEM water electrolysis technique because of its low cost and high stability.  相似文献   
14.
利用双螺杆挤出机制备聚氨酯和甲基丙烯酸甲酯—丙烯腈-丁二烯-苯乙烯树脂熔融共混物(合金).研究TPU的类型以及含量对TPU/MABS合金的透光率、力学性能和缺口冲击强度影响.结果表明:TPU/MABS合金可以保持较好透明性,随TPU含量的增加,合金材料的拉伸强度和弯曲模量逐渐降低,但是合金材料的冲击强度得到明显提高.扫...  相似文献   
15.
Near-field optical trapping can be realized with focused evanescent waves that are excited at the water–glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water–gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.  相似文献   
16.
对制备的化合物La0.8Ce0.2(Fe1-xCox)11.4Si1.6(x=0.02,0.04,0.06)的相组成、巡游电子变磁转变(IEMT)特性和磁热效应(MCE)进行了研究。粉末X射线衍射结果表明,经1373 K真空退火处理7 d后,化合物La0.8Ce0.2(Fe1-xCox)11.4Si1.6(x=0.02,0.04,0.06)均为单相立方NaZn13型晶体结构。随着Co含量由x=0.02增加到x=0.06,样品的居里温度TC由207 K上升到277 K。在0~1.5 T磁场变化下,x=0.02,0.04,0.06时样品的最大磁熵变|ΔSM(T)|分别为40.17,12.60和7.65 J.kg-1.K-1,可见该化合物有巨大的磁熵变,而且随Co含量的增加最大磁熵变迅速减小。该化合物的巨大磁熵变来源于TC处的一级相变,以及在TC以上由磁场诱导IEMT,但由于Co原子对Fe原子的替代能够抑制变磁转变的发生,因此该系化合物最大磁熵变随Co含量的增加迅速减小。  相似文献   
17.
H+CN体系中平行络合反应的动力学   总被引:1,自引:0,他引:1  
利用分子反应动力学的经典轨迹法研究化学反应体系已经开展了很多工作,但是,研究长寿命络合物的几何异构体就显得有些困难,主要表现在该方法对几何异构体不容易判别.由于这些原因和计算机时大增,Davis[1]利用经典轨迹法和统计方法相结合,研究了H+CN和H+NC体系在固定方位时的长寿命络合物动力学行为,并且采用Murrel等[2]拟合光谱数据的势能函数,该势能函数在HCN和HNC平衡点的频率与实验值相差较大.本文利用经典轨迹法研究了H+CN产生HCN和HNC平行络合物异构体的分子反应动力学行为,揭示了平行络合反应产生几何异构体的…  相似文献   
18.
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,合成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。 硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。 在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。 利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。 结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。  相似文献   
19.
砷的生物地球化学   总被引:4,自引:0,他引:4  
地下水和饮用水中低剂量砷引起的环境健康问题在全球范围内受到广泛关注.本文从生物地球化学行为的角度综述了关于砷在环境中迁移转化方面的研究进展.首先介绍了砷在土壤、水体和大气等介质中的分布、形态以及砷在这些介质中的循环.然后阐述了环境水体中控制砷迁移的两个过程即:砷在土壤表面的吸附-解吸和沉淀-溶解过程,并详细讨论了在吸附-解吸过程中生物、物理和化学等因素的影响.  相似文献   
20.
为研究不同约束端面下甲烷的爆炸特性,利用自行搭建的实验平台完成了多种约束端面下不同浓度甲烷的爆炸实验。研究表明:约束端面的性质对甲烷的爆炸特性有显著影响,约束端面的承压强度越高,甲烷的爆炸超压越大。单层PVC薄膜作用下,薄膜破裂,不会引起火焰与超压的振荡;而纸膜破裂后,管道内外气流的高速泄放和回流则会引起超压振荡,使火焰前锋波动并发生扭曲变形;两者共同作用时,PVC薄膜会阻碍气流的泄放与回流,加速超压衰减,抑制火焰和超压的振荡。然而,随着纸膜层数增加,破膜时管道内外形成的巨大压差会使约束端面完全破裂,降低PVC薄膜的抑制作用。当破膜难度达到一定程度时,约束端面作用下的泄压峰值成为不同浓度甲烷爆炸的最大超压峰值,且泄爆压力并不随甲烷浓度的改变而改变,因此不同浓度甲烷的爆炸超压在较高的泄爆压力下相同;此时,相同约束端面下不同浓度甲烷的压力振荡曲线在压力衰减的前半个周期内完全重合,管道内外的压差成为主导超压振荡的重要因素,而不同浓度甲烷的燃烧速率对超压振荡的影响则可以忽略不计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号