首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   1篇
化学   374篇
晶体学   2篇
力学   5篇
数学   48篇
物理学   74篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   18篇
  2012年   24篇
  2011年   32篇
  2010年   9篇
  2009年   7篇
  2008年   30篇
  2007年   31篇
  2006年   21篇
  2005年   40篇
  2004年   26篇
  2003年   19篇
  2002年   10篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1993年   5篇
  1991年   3篇
  1989年   4篇
  1987年   6篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1981年   11篇
  1980年   14篇
  1979年   10篇
  1978年   10篇
  1977年   10篇
  1976年   4篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1971年   4篇
  1970年   3篇
  1963年   3篇
  1935年   2篇
  1931年   3篇
  1914年   2篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
181.
Products in the reactions of H2O2 and H2, O2 mixtures have been observed by matrix infrared absorptions and identified through comparisons with vibrational frequencies calculated for these molecules. The chromium reactions are dominated by lower oxidation state products, whereas molybdenum and tungsten chemistry favors higher oxidation state products. For example chromium dihydroxide, Cr(OH)2, molybdenum hydride oxide, H2MoO2, and tungsten hydride oxide, H2WO2, were observed in laser-ablated metal atom reactions with H2O2, and calculations show that these are the most stable molecules for this stoichiometry. Chromium monohydroxide, CrOH, was identified through O-H and Cr-O stretching modes, while HWO was observed by W-H and W=O stretching modes. The metal oxyhydroxides, HMO(OH), were observed for all metals. However, reactions with two H2O2 molecules give OCr(OH)2, MoO2(OH)2, and WO2(OH)2. The relative stabilities of different structures for Cr, Mo, and W are due to different participations of occupied d orbitals. The reactivity of the cold metal atoms with H2O2 on annealing the solid argon matrix increases on going down the group.  相似文献   
182.
Abstract— Ab initio configuration interaction wavefunctions and energies are reported for 19 doublet states of the anion radical of ethyl bacteriochlorophyllide a (Et-BChl a˙), and are employed in a resolution of the electronic absorption spectrum, as well as in a comparison with a previously reported study of the electronic states and spectrum of the anion radical of ethyl bacteriopheophorbide a (Et-BPheo a˙). The lowest two excited doublet states, D1 and D2, of Et-BChl a˙ are found to be approximately degenerate and are predicted to contribute to the experimentally observed absorption at 10000 cm?1. In contrast, the D2←D0 transition in Et-BPheo a˙ is predicted to contribute to the 11000 cm?1 absorption, while the D1←D0 transition appears at approximately 8600 cm?1 with a low oscillator strength (f= 0.002). The prominent visible absorption at ~15700 cm?1 in both molecules is found to be due to the D4← D0 transition. Another difference between the predicted spectra of the two molecules appears in the low-energy shoulder of the Soret band. Here, two intense transitions, D10←D0 and D11←D0, are predicted for Et-BChl a˙, as opposed to three fairly intense transitions, D7←D0, D8←D0 and D9←D0, for Et-BPheo a˙, differences which may provide a means of distinguishing between the two molecules using resonance Raman spectroscopy. The remainder of the Soret band of Et-BChl a˙ above 26000 cm?1 consists of a number of closely-spaced transitions to states D12←D18. The intense transitions D12←D0, D13←D0, D14←D0 are predicted to contribute to the Soret maximum near 30000 cm?1. The ground state spin densities of the two molecules are similar, with the minor difference of somewhat less spin density located on the methine carbon atoms of Et-BChl a˙ compared with Et-BPheo a˙.  相似文献   
183.
184.
Uranium atoms excited by laser ablation react with CO in excess neon to produce the novel CUO molecule, which forms distinct Ng complexes (Ng = Ar, Kr, Xe) when the heavier noble gases are added. The CUO(Ng) complexes are identified through CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations. The U-C and U-O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from frequencies for the (1)Sigma(+) CUO ground state, which identifies singlet ground state CUO(Ng) complexes. In solid neon the CUO molecule is also a complex CUO(Ne)(n), and the CUO(Ne)(n-1)(Ng) complexes are likewise specified. The next singlet CUO(Ne)(x)(Ng)(2) complexes in excess neon follow in like manner. However, the higher CUO(Ne)(x)(Ng)(n) complex (n = 3, 4) stretching modes approach pure argon matrix CUO(Ar)(n) values and isotopic behavior, which are characterized as triplet ground state complexes by DFT frequency calculations. This work suggests that the singlet-triplet crossing occurs with 3 Ar, 3 Kr, or 4 Xe and a balance of Ne atoms coordinated to CUO in the neon matrix host.  相似文献   
185.
Laser-ablated sodium atom reactions with H2 have been investigated in solid molecular hydrogens and neon. The NaH molecule and (NaH)2,3,4 clusters were identified by IR spectra with isotopic substitution (HD and D2) and comparison to frequencies calculated by density functional theory and the MP2 method. The use of para-hydrogen enriched samples provides evidence for a (H2)nNaH subcomplex surrounded by the solid hydrogen matrix cage. The ionic rhombic (NaH)2 dimer is characterized by strong absorptions at 761.7, 759.1, and 757.0 cm(-1), respectively, in solid neon, para-hydrogen, and normal hydrogen matrices. The cyclic sodium hydride trimer and tetramer clusters are also observed. Although the spontaneous reaction of two Li and H2 to form (LiH)2 occurs on annealing in solid H2, the formation of (NaH)2 requires near uv photoexcitation.  相似文献   
186.
187.
Lyon JT  Andrews L 《Inorganic chemistry》2007,46(12):4799-4808
Group 4 transition metal methylidene difluoride complexes (CH2=MF2) are formed by the reaction of methylene fluoride with laser-ablated metal atoms and are isolated in an argon matrix. Isotopic substitution of the CH2F2 precursor and theoretical computations (B3LYP and CCSD) confirm product identifications and assignments. Our calculations indicate that the CH2=MF2 complexes have near C2v symmetry and are considerably more stable than other possible products (CH2(mu-F)MF and CHF=MHF). The primary reaction exothermicity provides more than enough energy to activate the initial bridge-bonded CH2(mu-F)MF products on the triplet potential energy surface to complete an alpha-F transfer to form the very stable CH2=MF2 products. Analogous experiments with CHF3 produce CHF=TiF2, which is not distorted at the C-H bond, whereas the heavier group 4 metals form lower-energy triplet HC/MF3 complexes, which contain weak degenerate C(p)-M(d) pi-bonding interactions. Comparisons are made with the CH2=MHF methylidene species, which showed considerable agostic distortions.  相似文献   
188.
Reactions of ethylene with laser-ablated group 5 metal atoms in excess argon have been carried out during codeposition at 8 K, and the matrix infrared spectra of intermediate products have been investigated. Oxidative C-H insertion of the transition metal into a C-H bond occurs and beta-hydrogen transfer follows to form the dihydrido complexes (MH2-C2H2). In the Ta spectra, the dihydrido complex is the primary product, whereas the Nb and V spectra reveal absorptions from both the insertion (MH-C2H3) and dihydrido complexes. The insertion and dihydrido complexes identified here are in fact the reaction intermediates in the hydrogen elimination of ethylene proposed in previous reaction dynamics studies. Calculations also show that the higher oxidation-state complex becomes more stable relative to the insertion product going down the group 5 family.  相似文献   
189.
With molecular dynamics simulations of a fluid mixture of classical particles interacting with pairwise additive Weeks-Chandler-Andersen potentials, we consider the time series of particle displacements and thereby determine the distributions for local persistence times and local exchange times. These basic characterizations of glassy dynamics are studied over a range of supercooled conditions and were shown to have behaviors, most notably decoupling, similar to those found in kinetically constrained lattice models of structural glasses. Implications are noted.  相似文献   
190.
Laser-ablated Sc, Y, and La atoms react with molecular hydrogen upon condensation in excess argon, neon, and deuterium to produce the metal dihydride molecules and dihydrogen complexes MH(2) and (H(2))MH(2). The homoleptic tetrahydrometalate anions ScH(4)(-), YH(4)(-), and LaH(4)(-) are formed by electron capture and identified by isotopic substitution (D(2), HD, and H(2) + D(2) mixtures). Doping with CCl(4) to serve as an electron trap virtually eliminates the anion bands, and further supports the anion identifications. The observed vibrational frequencies are in agreement with the results of density functional theory calculations, which predict electron affinities in the 2.8-2.4 eV range for the (H(2))ScH(2), (H(2))YH(2), and (H(2))LaH(2) complexes, and indicate high stability for the MH(4)(-) (M = Sc, La, Y) anions and suggest the promise of synthesis on a larger scale for use as reducing agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号