首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5421篇
  免费   116篇
  国内免费   55篇
化学   2588篇
晶体学   79篇
力学   327篇
数学   1154篇
物理学   1444篇
  2022年   42篇
  2021年   61篇
  2020年   56篇
  2016年   65篇
  2015年   109篇
  2014年   119篇
  2013年   469篇
  2012年   145篇
  2011年   136篇
  2010年   152篇
  2009年   187篇
  2008年   180篇
  2007年   170篇
  2006年   157篇
  2005年   124篇
  2004年   120篇
  2003年   129篇
  2002年   151篇
  2001年   102篇
  2000年   113篇
  1999年   82篇
  1998年   70篇
  1997年   75篇
  1996年   90篇
  1995年   90篇
  1994年   83篇
  1993年   86篇
  1992年   71篇
  1991年   75篇
  1990年   95篇
  1989年   69篇
  1988年   77篇
  1987年   67篇
  1986年   78篇
  1985年   59篇
  1984年   66篇
  1983年   74篇
  1982年   69篇
  1981年   61篇
  1980年   58篇
  1979年   69篇
  1978年   63篇
  1977年   67篇
  1976年   64篇
  1975年   58篇
  1974年   71篇
  1973年   54篇
  1972年   105篇
  1971年   66篇
  1970年   45篇
排序方式: 共有5592条查询结果,搜索用时 15 毫秒
111.
112.
113.
Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For m = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z T ≈ 0.48 ± 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely > − 1 + 3 m /2, i.e., > − 0.55 for m = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.  相似文献   
114.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   
115.
A method of heat-assisted magnetic recording (HAMR) potentially suitable for probe-based storage systems is characterized. In this work, field emission current from a scanning tunneling microscope (STM) tip is used as the heating source. Pulse voltages of 2–7 V were applied to a CoNi/Pt multilayered film fabricated on either bare silicon or oxidized silicon substrates. Different types of Ir/Pt and W STM tips were used in the experiment. The results show that thermally recorded magnetic marks are formed with a nearly uniform mark size of 170 nm on the film fabricated on bare silicon substrate when the pulse voltage is above a threshold voltage. The mark size becomes 260 nm when they are written on the identical film fabricated on an oxidized silicon substrate. The threshold voltage depends on the material work function of the tip, with W having a threshold voltage about 1 V lower than Pt. A synthesized model, which contains the calculation of the emission current, the simulation of heat transfer during heating, and the study of magnetic domain formation, was introduced to explain experimental results. The simulation agrees well with the experiments.  相似文献   
116.
Characterizing interfacial reactions is a crucial part of understanding the behavior of nanoparticles in nature and for unlocking their functional potential. Here, an advanced nanostructure characterization approach to study the corrosion processes of silver nanoparticles (Ag‐Nps), currently the most highly produced nanoparticle for nanotechnology, is presented. Corrosion of Ag‐Nps under aqueous conditions, in particular in the presence of organic matter and halide species common to many natural environments, is of particular importance because the release of toxic Ag+ from oxidation/dissolution of Ag‐Nps may strongly impact ecosystems. In this context, Ag‐Nps capped with polyvinolpyrrolidone (PVP) in contact with a simple proxy of organic matter in natural waters [polyacrylic acid (PAA) and Cl? in solution] has been investigated. A combination of synchrotron‐based X‐ray standing‐wave fluorescence yield‐ and X‐ray diffraction‐based experiments on a sample consisting of an approximately single‐particle layer of Ag‐Nps deposited on a silicon substrate and coated by a thin film of PAA containing Cl revealed the formation of a stable AgCl corrosion product despite the presence of potential surface stabilizers (PVP and PAA). Diffusion and precipitation processes at the Ag‐Nps–PAA interface were characterized with a high spatial resolution using this new approach.  相似文献   
117.
For the last decade, a variant of pulsed laser ablation, Resonant-Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE), has been studied as a deposition technique for organic and polymeric materials. RIR-MAPLE minimizes photochemical damage from direct interaction with the intense laser beam by encapsulating the polymer in a high infrared-absorption solvent matrix. This review critically examines the thermally-induced ablation mechanisms resulting from irradiation of cryogenic solvent matrices by a tunable free electron laser (FEL). A semi-empirical model is used to calculate temperatures as a function of time in the focal volume and determine heating rates for different resonant modes in two model solvents, based on the thermodynamics and kinetics of the phase transitions induced in the solvent matrices. Three principal ablation mechanisms are discussed, namely normal vaporization at the surface, normal boiling, and phase explosion. Normal vaporization is a highly inefficient polymer deposition mechanism as it relies on collective collisions with evaporating solvent molecules. Diffusion length calculations for heterogeneously nucleated vapor bubbles show that normal boiling is kinetically limited. During high-power pulsed-FEL irradiation, phase explosion is shown to be the most significant contribution to polymer deposition in RIR-MAPLE. Phase explosion occurs when the target is rapidly heated (108 to 1010 K/s) and the solvent matrix approaches its critical temperature. Spontaneous density stratification (spinodal decay) within the condensed metastable phase leads to rapid homogeneous nucleation of vapor bubbles. As these vapor bubbles interconnect, large pressures build up within the condensed phase, leading to target explosions and recoil-induced ejections of polymer to a near substrate. Phase explosion is a temperature (fluence) threshold-limited process, while surface evaporation can occur even at very low fluences.  相似文献   
118.
119.
The reduction of complementary metal oxide semiconductor dimensions through transistor scaling is in part limited by the SiO2 dielectric layer thickness. Among the materials evaluated as alternative gate dielectrics one of the leading candidate is La2O3 due to its high permittivity and thermodynamic stability. However, during device processing, thermal annealing can promote deleterious interactions between the silicon substrate and the high-k dielectric degrading the desired oxide insulating properties.The possibility to grow poly-SiGe on top of La2O3//Si by laser assisted techniques therefore seems to be very attractive. Low thermal budget techniques such as pulsed laser deposition and crystallization can be a good choice to reduce possible interface modifications due to their localized and limited thermal effect.In this work the laser annealing by ArF excimer laser irradiation of amorphous SiGe grown on La2O3//Si has been analysed theoretically by a numerical model based on the heat conduction differential equation with the aim to control possible modifications at the La2O3//Si interface. Simulations have been carried out using different laser energy densities (0.26-0.58 J/cm2), different La2O3 film thickness (5-20 nm) and a 50 nm, 30 nm thick amorphous SiGe layer. The temperature distributions have been studied in both the two films and substrate, the melting depth and interfaces temperature have been evaluated. The fluences ranges for which the interfaces start to melt have been calculated for the different configurations.Thermal profiles and interfaces melting point have shown to be sensitive to the thickness of the La2O3 film, the thicker the film the lower the temperature at Si interface.Good agreement between theoretical and preliminary experimental data has been found.According to our results the oxide degradation is not expected during the laser crystallization of amorphous Si0.7Ge0.3 for the examined ranges of film thickness and fluences.  相似文献   
120.
A tantalum pentoxide‐based (Ta2O5‐based) micro‐ring all‐optical modulator was fabricated. The refractive index inside the micro‐ring cavity was modified using the Kerr effect by injecting a pumped pulse. The transmittance of the ring resonator was controlled to achieve all‐optical modulation at the wavelength of the injected probe. When 12 GHz pulses with a peak power of 1.2 W were coupled in the ring cavity, the transmission spectrum of the Ta2O5 resonator was red‐shifted by 0.04 nm because of the Kerr effect. The relationship between the modulation depth and gap of the Ta2O5 directional coupler is discussed. An optimized gap of 1100 nm was obtained, and a maximum buildup factor of 11.7 with 84% modulation depth was achieved. The nonlinear refractive index of Ta2O5 at 1.55 μm was estimated as 3.4 × 10?14 cm2/W based on the Kerr effect, which is almost an order of magnitude higher than that of Si3N4. All results indicate that Ta2O5 has potential for use in nonlinear waveguide applications with modulation speeds as high as tens of GHz.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号