首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27916篇
  免费   5179篇
  国内免费   4374篇
化学   20983篇
晶体学   461篇
力学   1552篇
综合类   304篇
数学   3148篇
物理学   11021篇
  2024年   64篇
  2023年   572篇
  2022年   847篇
  2021年   1139篇
  2020年   1308篇
  2019年   1372篇
  2018年   1083篇
  2017年   1078篇
  2016年   1446篇
  2015年   1534篇
  2014年   1871篇
  2013年   2330篇
  2012年   2715篇
  2011年   2797篇
  2010年   2011篇
  2009年   1926篇
  2008年   2082篇
  2007年   1710篇
  2006年   1546篇
  2005年   1216篇
  2004年   1009篇
  2003年   764篇
  2002年   772篇
  2001年   598篇
  2000年   509篇
  1999年   503篇
  1998年   379篇
  1997年   315篇
  1996年   317篇
  1995年   248篇
  1994年   221篇
  1993年   223篇
  1992年   153篇
  1991年   150篇
  1990年   114篇
  1989年   113篇
  1988年   89篇
  1987年   55篇
  1986年   66篇
  1985年   65篇
  1984年   32篇
  1983年   22篇
  1982年   28篇
  1981年   13篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1972年   4篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Developing efficient and recyclable heterogeneous catalysts for organic reactions in water is important for the sustainable development of chemical industry. In this work, Pd nanoparticles supported on DABCO-functionalized porous organic polymer was successfully prepared through an easy copolymerization and successive immobilization method. Characterization results indicated that the prepared catalyst featured big surface area, hierarchical porous structure, and excellent surface amphiphilicity. We demonstrated the use of this amphiphilic catalyst in two case reactions, i.e. the aqueous hydrodechlorination and Suzuki-Miyaura coupling reactions. Under mild reaction conditions, the catalyst showed high catalytic activities for the two reactions. In addition, the catalyst could be easily recovered and reused for several times. Also, no obvious Pd leaching and aggregation of Pd nanoparticles occurred up during the consecutive reactions.  相似文献   
993.
Here we present a novel design of electrochemical signal enhancer to increase the detection sensitivity of electrochemical DNA biosensors. The key element of this enhancer is a lysine‐rich peptide (LRP). Its C‐terminal is conjugated with a planer molecule, being able to intercalate into the base pairs of probe‐target duplexes. The lysine residues of LRP are covalently linked with electrochemical signal indicators, acting as an assembly of electrochemical signal indicators. Experimental results proved the feasibility of the novel design. We have examined the effects of the numbers of lysine residues and the hybridization conditions on the detection sensitivity. The optimization procedures have led to significant sensitivity enhancement, and the LOD (limit of detection) has been determined to be 1.4 amol. This enhancer demonstrates advantages of easy operation, simple instrumentation, and high exemption from environmental influence.  相似文献   
994.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   
995.
All-polymer solar cells (all-PSCs) exhibit great potentials in commercial applications. All-PSCs have observed steady performance gains with power conversion efficiency now reaching over 17% in the open literature. However, the current processing of all-PSCs relies predominantly on toxic, chlorinated solvents in moisture-free environments, representing a significant barrier for their commercialization due to the added costs to handle and dispose of such solvents. There is thus an urgent need for safe, environmentally benign, and sustainable ink-based processing methods to produce all-PSC devices reliably and reproducibly in ambient air. In this perspective, fundamental insights on the interplay between all-polymer blend morphologies and eco-friendly solvents are provided. Also, we discuss the recent successes of the green processing methods to manipulate the photoactive morphologies for high-efficiency all-PSCs. In the end, we provide an outlook on future challenges and opportunities of eco-friendly solvents processed all-PSCs for large-scale manufacturing.  相似文献   
996.
Let be the class of all sense‐preserving homeomorphic self‐mappings of . The aim of this paper is twofold. First, we obtain Heinz‐type inequality for (K,K)‐quasiconformal mappings satisfying inhomogeneous biharmonic equation Δ(Δω) = g in unit disk with associated boundary value conditions and . Second, we establish biLipschitz continuity for (K,K)‐quasiconformal mappings satisfying aforementioned inhomogeneous biharmonic equation when and are small enough.  相似文献   
997.
A specific and robust LC–MS/MS method was developed and validated for the quantitative determination of GDC‐3280 in human plasma and urine. The nonspecific binding associated with urine samples was overcome by the addition of CHAPS. The sample volume was 25 μL for either matrix, and supported liquid extraction was employed for analyte extraction. d6‐GDC‐3280 was used as the internal standard. Linear standard curves (R2 > 0.9956) were established from 5.00 to 5000 ng/mL in both matrices with quantitation extended to 50,000 ng/mL through dilution. In plasma matrix, the precision (RSD) ranged from 1.5 to 9.9% (intra‐run) and from 2.4 to 7.2% (inter‐run); the accuracy (RE) ranged from 96.1 to 107% (intra‐run) and from 96.7 to 104% (inter‐run). Similarly, in urine the precision was 1.5–6.2% (intra‐run) and 1.9–6.1% (inter‐run); the accuracy was 83.1–99.3% (intra‐run) and 87.1–98.3% (inter‐run). Good recovery (>94%) and negligible matrix effect were achieved in both matrices. Long‐term matrix stability was established for at least 703 days in plasma and 477 days in urine. Bench‐top stability of 25 h and five freeze–thaw cycles were also confirmed in both matrices. The method was successfully implemented in GDC‐3280's first‐in‐human trial for assessing its pharmacokinetic profiles.  相似文献   
998.
999.
NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+, resulting in electron-deficient properties of the Ni sites, which would function as “electron-hungry” sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li−NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm−2, which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2. Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.  相似文献   
1000.
Reported here is a highly efficient Pd/Xiang-Phos catalyzed enantioselective carboetherification of alkenyl oximes with either aryl or alkenyl halides, delivering various chiral 3,5-disubstituted and 3,5,5-trisubstituted isoxazolines in good yields with up to 97 % ee. The sterically bulky and electron-rich (S,Rs)- NMe-X2 ligand is responsible for the excellent reactivities and enantioselectivities. The salient features of this transformation include mild reaction conditions, general substrate scope, good functional-group tolerance, good yields, high enantioselectivities, easy scale-up, and application in the late-stage modification of bioactive compounds. The obtained products can be readily transformed into useful chiral 1,3-aminoalcohols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号