首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2973篇
  免费   116篇
  国内免费   21篇
化学   2022篇
晶体学   20篇
力学   116篇
数学   524篇
物理学   428篇
  2023年   24篇
  2022年   36篇
  2021年   45篇
  2020年   50篇
  2019年   77篇
  2018年   44篇
  2017年   28篇
  2016年   85篇
  2015年   95篇
  2014年   109篇
  2013年   155篇
  2012年   214篇
  2011年   247篇
  2010年   157篇
  2009年   133篇
  2008年   170篇
  2007年   185篇
  2006年   190篇
  2005年   187篇
  2004年   176篇
  2003年   112篇
  2002年   115篇
  2001年   43篇
  2000年   40篇
  1999年   24篇
  1998年   27篇
  1997年   26篇
  1996年   24篇
  1995年   25篇
  1994年   10篇
  1993年   23篇
  1992年   11篇
  1991年   8篇
  1990年   4篇
  1989年   11篇
  1987年   5篇
  1986年   6篇
  1985年   11篇
  1984年   19篇
  1983年   13篇
  1982年   17篇
  1981年   12篇
  1980年   21篇
  1979年   9篇
  1978年   9篇
  1977年   9篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
  1973年   10篇
排序方式: 共有3110条查询结果,搜索用时 109 毫秒
161.
Potassium silanide [KSiH3] contains 4.2 wt % of hydrogen and has been intensely studied as hydrogen storage material. The macrocyclic ligand Me4TACD (1,4,7,10-tetramethyl-1,4,7,10-tetraaminocyclododecane, L ) stabilizes the full range of triphenylsilyl complexes [( L )MSiPh3]n (M=Li–Cs), which react with H2 or PhSiH3 to form molecular [( L )MSiH3]n that can be isolated in soluble form and fully characterized.  相似文献   
162.
Ruthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D2 or T2 gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification. Moreover, the efficacy of the catalyst permits, even under subatmospheric pressure of T2 gas, the preparation of complex radiolabeled drugs owning high molar activities. From a fundamental point of view, a detailed DFT-based mechanistic study identifying undisclosed key intermediates, allowed a deeper understanding of C−H (and N−H) activation processes occurring at the surface of metallic nanoclusters.  相似文献   
163.
Miniaturized autonomous chemo‐electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light‐emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble‐induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self‐propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (?pH and ?I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self‐orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine‐tuning of the dynamic behavior of these swimmers.  相似文献   
164.
We propose a straightforward access to a rotating light-emitting device powered by wireless electrochemistry. A magnetic stirrer is used to rotate a light-emitting diode (LED) due to the intrinsic magnetic properties of the tips that contain iron. At the same time, the LED is submitted to an electric field and acts as a bipolar electrode. The electrochemical processes that are coupled on both extremities of the LED drive an electron flow across the device, resulting in light emission. The variation of the LED alignment in time enables an alternating light emission that is directly controlled by the rotation rate. The stirring also enables a continuous mixing of the electrolyte that improves the stability of the output signal. Finally, the LED brightness can readily reveal a change of chemical composition in the electrolyte solution.  相似文献   
165.
Vetiver (Chrysopogon zizanioides (L.) Roberty) is a major tropical perfume crop. Access to its essential oil (EO)-filled roots is nevertheless cumbersome and land-damaging. This study, therefore, evaluated the potential of vetiver cultivation under soilless high-pressure aeroponics (HPA) for volatile organic compound (VOC) production. The VOC accumulation in the roots was investigated by transmission electron microscopy, and the composition of these VOCs was analyzed by gas chromatography coupled with mass spectrometry (GC/MS) after sampling by headspace solid-phase microextraction (HS-SPME). The HPA-grown plants were compared to plants that had been grown in potting soil and under axenic conditions. The HPA-grown plants were stunted, demonstrating less root biomass than the plants that had been grown in potting soil. The roots were slender, thinner, more tapered, and lacked the typical vetiver fragrance. HPA cultivation massively impaired the accumulation of the less-volatile hydrocarbon and oxygenated sesquiterpenes that normally form most of the VOCs. The axenic, tissue-cultured plants followed a similar and more exacerbated trend. Ultrastructural analyses revealed that the HPA conditions altered root ontogeny, whereby the roots contained fewer EO-accumulating cells and hosted fewer and more immature intracellular EO droplets. These preliminary results allowed to conclude that HPA-cultivated vetiver suffers from altered development and root ontology disorders that prevent EO accumulation.  相似文献   
166.
Filamentous fungi synthesize natural products as an ecological function. In this study, an interesting indigenous fungus producing orange pigment exogenously was investigated in detail as it possesses additional attributes along with colouring properties. An interesting fungus was isolated from a dicot plant, Maytenus rothiana. After a detailed study, the fungal isolate turned out to be a species of Gonatophragmium belonging to the family Acrospermaceae. Based on the morphological, cultural, and sequence-based phylogenetic analysis, the identity of this fungus was confirmed as Gonatophragmium triuniae. Although this fungus grows moderately, it produces good amounts of pigment on an agar medium. The fermented crude extract isolated from G. triuniae has shown antioxidant activity with an IC50 value of 0.99 mg/mL and antibacterial activity against Gram-positive bacteria (with MIC of 3.91 μg/mL against Bacillus subtilis, and 15.6 μg/mL and 31.25 μg/mL for Staphylococcus aureus and Micrococcus luteus, respectively). Dyeing of cotton fabric mordanted with FeSO4 using crude pigment was found to be satisfactory based on visual observation, suggesting its possible use in the textile industry. The orange pigment was purified from the crude extract by preparative HP-TLC. In addition, UV-Vis, FTIR, HRMS and NMR (1H NMR, 13C NMR), COSY, and DEPT analyses revealed the orange pigment to be “1,2-dimethoxy-3H-phenoxazin-3-one” (C14H11NO4, m/z 257). To our understanding, the present study is the first comprehensive report on Gonatophragmium triuniae as a potential pigment producer, reporting “1,2-dimethoxy-3H-phenoxazin-3-one” as the main pigment from the crude hexane extract. Moreover, this is the first study reporting antioxidant, antibacterial, and dyeing potential of crude extract of G. triuniae, suggesting possible potential applications of pigments and other bioactive secondary metabolites of the G. triuniae in textile and pharmaceutical industry.  相似文献   
167.
168.
The infrared absorption of the ν3 band region of SF6, at temperatures spanning the 130 to 297 K range, has been reexamined using improved instrumentation with one goal: to estimate the broadening of parameters by nitrogen gas. These parameters are compared to previous literature predictions and an extended set of IR cross-sections is proposed and compared to other existing datasets.  相似文献   
169.
Theoretical and Computational Fluid Dynamics - The aerodynamic characteristics of two neighboring airfoils are greatly different from those of a single airfoil, for both attached and detached flow...  相似文献   
170.
The splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable than acidic solutions for the complementary oxygen evolution half‐reaction. We show for the first time that amorphous molybdenum sulfide is a highly active hydrogen evolution catalyst in basic medium. The amorphous molybdenum sulfide catalyst and a Ni–Mo catalyst are then deposited on surface‐protected cuprous oxide photocathodes to catalyze sunlight‐driven hydrogen production in 1 M KOH. The photocathodes give photocurrents of ?6.3 mA cm?2 at the reversible hydrogen evolution potential, the highest yet reported for a metal oxide photocathode using an earth‐abundant hydrogen evolution reaction catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号