首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9397篇
  免费   1678篇
  国内免费   2258篇
化学   6728篇
晶体学   295篇
力学   520篇
综合类   345篇
数学   1412篇
物理学   4033篇
  2024年   15篇
  2023年   115篇
  2022年   271篇
  2021年   325篇
  2020年   347篇
  2019年   344篇
  2018年   322篇
  2017年   394篇
  2016年   361篇
  2015年   450篇
  2014年   564篇
  2013年   706篇
  2012年   788篇
  2011年   795篇
  2010年   695篇
  2009年   675篇
  2008年   805篇
  2007年   729篇
  2006年   693篇
  2005年   596篇
  2004年   527篇
  2003年   345篇
  2002年   406篇
  2001年   375篇
  2000年   377篇
  1999年   216篇
  1998年   122篇
  1997年   92篇
  1996年   73篇
  1995年   94篇
  1994年   104篇
  1993年   89篇
  1992年   75篇
  1991年   65篇
  1990年   73篇
  1989年   37篇
  1988年   40篇
  1987年   27篇
  1986年   32篇
  1985年   24篇
  1984年   16篇
  1983年   18篇
  1982年   12篇
  1981年   17篇
  1980年   16篇
  1979年   12篇
  1978年   11篇
  1977年   5篇
  1976年   5篇
  1971年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
A rigid-triangle velocity field for combined backward-forward extrusion based on the experiments and the slip-line field is proposed in this paper. The flow separation point in the rigid-triangle velocity field is defined in accordance with the slip-line theory. A formula of minimum upper bound solution for the punch pressure of the combined extrusion is derived. The values from this formula are compared with those from the slip-line solution and with experimental results. The formula of upper bound solution can be used in practice.  相似文献   
992.
Reported herein is the rhodium‐catalyzed enantioselective C? H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)‐TMS‐Segphos, the reactions took place under very mild conditions to afford metallocene‐fused siloles in good to excellent yields and with ee values of up to 97 %. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C? H silylations.  相似文献   
993.
The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34+ HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34+ cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34+ cells, but not CD34 cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80+ macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis.  相似文献   
994.
Altered metabolism is a critical part of cancer cell properties, but real‐time monitoring of metabolomic profiles has been hampered by the lack of a facile method. Here, we propose real‐time metabolomic monitoring of live cancer cells using 13C6‐glucose and heteronuclear two‐dimensional (2D) NMR. The method allowed for metabolomic differentiation between cancer and normal cells on the basis of time‐dependent changes in metabolite concentrations. Cancer cells were found to have large in‐ and out‐flux of pyruvate as well as increased net production of alanine and acetate. The method also enabled evaluation of the metabolic effects of galloflavin whose anticancer effects have been attributed to its specific inhibition of lactate dehydrogenase. Our approach revealed previously unknown functional targets of galloflavin, which were further confirmed at the protein levels. Our method is readily applicable to the study of metabolic alterations in other cellular disease model systems.  相似文献   
995.
A unified strategy involving visible‐light‐induced iminyl‐radical formation has been established for the construction of pyridines, quinolines, and phenanthridines from acyl oximes. With fac‐[Ir(ppy)3] as a photoredox catalyst, the acyl oximes were converted by 1 e? reduction into iminyl radical intermediates, which then underwent intramolecular homolytic aromatic substitution (HAS) to give the N‐containing arenes. These reactions proceeded with a broad range of substrates at room temperature in high yield. This strategy of visible‐light‐induced iminyl‐radical formation was successfully applied to a five‐step concise synthesis of benzo[c]phenanthridine alkaloids.  相似文献   
996.
Mesoporous Co3O4 nanosheets (Co3O4‐NS) and nitrogen‐doped reduced graphene oxide (N‐rGO) are synthesized by a facile hydrothermal approach, and the N‐rGO/Co3O4‐NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X‐ray photoelectron spectroscopy (XPS), and TEM. The lithium‐storage properties of N‐rGO/Co3O4‐NS composites are evaluated in a half‐cell assembly to ascertain their suitability as a negative electrode for lithium‐ion battery applications. The 2D/2D nanostructured mesoporous N‐rGO/Co3O4‐NS composite delivered a reversible capacity of about 1305 and 1501 mAh g?1 at a current density of 80 mA g?1 for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N‐rGO/Co3O4‐NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet‐like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N‐rGO and carbon shells in Co3O4‐NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex‐situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage.  相似文献   
997.
Herein we present a simple method for fabricating core–shell mesostructured CuO@C nanocomposites by utilizing humic acid (HA) as a biomass carbon source. The electrochemical performances of CuO@C nanocomposites were evaluated as an electrode material for supercapacitors and lithium‐ion batteries. CuO@C exhibits an excellent capacitance of 207.2 F g?1 at a current density of 1 A g?1 within a potential window of 0–0.46 V in 6 M KOH solution. Significantly, CuO electrode materials achieve remarkable capacitance retentions of approximately 205.8 F g?1 after 1000 cycles of charge/discharge testing. The CuO@C was further applied as an anode material for lithium‐ion batteries, and a high initial capacity of 1143.7 mA h g?1 was achieved at a current density of 0.1 C. This work provides a facile and general approach to synthesize carbon‐based materials for application in large‐scale energy‐storage systems.  相似文献   
998.
Proteasome inhibitors have revolutionized the treatment of multiple myeloma, and validated the therapeutic potential of the ubiquitin proteasome system (UPS). It is believed that in part, proteasome inhibitors elicit their therapeutic effect by inhibiting the degradation of misfolded proteins, which is proteotoxic and causes cell death. In spite of these successes, proteasome inhibitors are not effective against solid tumors, thus necessitating the need to explore alternative approaches. Furthermore, proteasome inhibitors lead to the formation of aggresomes that clear misfolded proteins via the autophagy–lysosome degradation pathway. Importantly, aggresome formation depends on the presence of polyubiquitin tags on misfolded proteins. We therefore hypothesized that inhibitors of ubiquitin conjugation should inhibit both degradation of misfolded proteins, and ubiquitin dependent aggresome formation, thus outlining the path forward toward more effective anticancer therapeutics. To explore the therapeutic potential of targeting the UPS to treat solid cancers, we have developed an inhibitor of ubiquitin conjugation (ABP A3) that targets ubiquitin and Nedd8 E1 enzymes, enzymes that are required to maintain the activity of the entire ubiquitin system. We have shown that ABP A3 inhibits conjugation of ubiquitin to intracellular proteins and prevents the formation of cytoprotective aggresomes in A549 lung cancer cells. Furthermore, ABP A3 induces activation of the unfolded protein response and apoptosis. Thus, similar to proteasome inhibitors MG132, bortezomib, and carfilzomib, ABP A3 can serve as a novel probe to explore the therapeutic potential of the UPS in solid and hematological malignancies.  相似文献   
999.
1000.
Di‐DACH‐pyridylamide ligands, symmetrical bridged bis‐Schiff base, and spiro pyrrolizines as catalysts in the synthesis of dihydropyrimidinethiones (DHPMs) using the Biginelli reaction is first reported. This new protocol has the advantages of environmental friendliness, short reaction time, excellent yields, and simple post‐treatment procedure. A series of DHPMs were obtained in high yields (up to 98%) in only 6 h. Moreover, based on the optimized condition, a novel Biginelli‐like reaction was first developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号