首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   25篇
化学   403篇
晶体学   5篇
力学   34篇
数学   133篇
物理学   110篇
  2024年   1篇
  2023年   7篇
  2022年   44篇
  2021年   35篇
  2020年   15篇
  2019年   20篇
  2018年   28篇
  2017年   26篇
  2016年   27篇
  2015年   19篇
  2014年   33篇
  2013年   68篇
  2012年   45篇
  2011年   58篇
  2010年   28篇
  2009年   31篇
  2008年   42篇
  2007年   25篇
  2006年   25篇
  2005年   15篇
  2004年   19篇
  2003年   11篇
  2002年   6篇
  2001年   9篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1973年   1篇
  1940年   2篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
71.
A number of groups have utilized molecular dynamics (MD) to calculate slow-motional electron paramagnetic resonance (EPR) spectra of spin labels attached to biomolecules. Nearly all such calculations have been based on some variant of the trajectory method introduced by Robinson, Slutsky and Auteri (J. Chem. Phys. 1992,96, 2609-2616). Here we present an alternative approach that is specifically adapted to the diffusion operator-based stochastic Liouville equation (SLE) formalism that is also widely used to calculate slow-motional EPR line shapes. Specifically, the method utilizes MD trajectories to derive diffusion parameters such as the rotational diffusion tensor, diffusion tilt angles, and expansion coefficients of the orienting potential, which are then used as direct inputs to the SLE line shape program. This approach leads to a considerable improvement in computational efficiency over trajectory-based methods, particularly for high frequency, high field EPR. It also provides a basis for deconvoluting the effects of local spin label motion and overall motion of the labeled molecule or domain: once the local motion has been characterized by this approach, the label diffusion parameters may be used in conjunction with line shape analysis at lower EPR frequencies to characterize global motions. The method is validated by comparison of the MD predicted line shapes to experimental high frequency (250 GHz) EPR spectra.  相似文献   
72.
We consider a viscoelastic wave equation with power nonlinearity. First, we construct a local solution by the Faedo-Galerkin approximation scheme and contraction mapping theorem. Next, we continue the local solution to the global one by a priori estimates obtained from a decreasing energy. Finally, we discuss the decay rate of the global solution by assuming that the kernel function is convex.  相似文献   
73.
74.
Mehrez  Khaled 《Positivity》2018,22(1):341-356
Positivity - In this paper, we introduce the notion of the Weinstein positive definite functions and we state a version of Bochner’s theorem. Furthermore, we study the strictly Weinstein...  相似文献   
75.
76.
First we study the Gauss and Poisson semigroups connected with the spherical mean operator. Next, we define and study the Littlewood– Paley g-function associated with the spherical mean operator for which we prove the L p -boundedness for ${p \in]1, 2]}$ .  相似文献   
77.
Ultraviolet, visible and infrared spectral measurements were used to investigate prepared undoped and rare-earth doped (2.5%) bismuth silicate glasses (80% Bi2O3–20%SiO2) before and after being subjected to gamma irradiation (8?Mrad). The base bismuth silicate glass reveals strong extended UV–near visible absorption bands which are attributed to the presence of trace iron impurities in the raw materials together with absorption due to sharing of Bi3+ ions. The RE-doped samples show the same strong UV–near visible bands as the undoped glasses beside extra narrow characteristic bands mostly in the visible and near-infrared regions due to the respective studied rare-earth ions. The base undoped and all RE-doped samples except CeO2 sample reveal quite resistance to the effect of gamma irradiation due to heavy atomic mass Bi3+ ions present in high content (80%) and the rare-earth ions are known to be weakly affected due to the known 5s, 5p shielding. The exceptional effect of CeO2-doped sample is related to the ability of Ce3+ ions to change its oxidation state through photochemical reaction by irradiation or exchange with Fe3+ present as trace iron impurities. The FT infrared spectra of the prepared glasses reveal characteristic absorption bands which are related to the silicate groups together with the sharing of vibrational modes due to Bi–O groups. The IR spectra are slightly affected by gamma irradiation indicating the stability of the structural network groups consisting of SiO4 and BiO6 units.  相似文献   
78.
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives KleinGordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   
79.
Peristaltic motion induced by a surface acoustic wave of a viscous, compressible and electrically conducting Maxwell fluid in a confined parallel-plane microchannel through a porous medium is investigated in the presence of a constant magnetic field. The slip velocity is considered and the problem is discussed only for the free pumping case. A perturbation technique is employed to analyze the problem in terms of a small amplitude ratio. The phenomenon of a “backward flow” is found to exist in the center and at the boundaries of the channel. In the second order approximation, the net axial velocity is calculated for various values of the fluid parameters. Finally, the effects of the parameters of interest on the mean axial velocity, the reversal flow, and the perturbation function are discussed and shown graphically. We find that in the non-Newtonian regime, there is a possibility of a fluid flow in the direction opposite to the propagation of the traveling wave. This work is the most general model of peristalsis created to date with wide-ranging applications in biological, geophysical and industrial fluid dynamics.  相似文献   
80.
The distribution of charge within the wall fouling region and bulk of a fluidized bed reactor was investigated. Experiments were conducted in a 0.1 m in diameter carbon steel fluidization column under atmospheric conditions. Polyethylene particles were fluidized with extra dry air at 1.5 the minimum fluidization velocity (bubbling flow regime) for 1 h. Using an online Faraday cup measurement technique, the net charge-to-mass ratio (q/m), as well as the size distribution of all particles adhered to the column wall and those in the bulk of the bed was determined. The wall particles were found to be predominantly negatively charged while those which did not adhere to the wall were predominantly positively charged. The charge distribution within each region was then investigated by a custom made charged particle separator that separated the particles according to their charge magnitude and polarity. It was determined that although the net charge of the wall layer particles was negative, a significant amount of positively charged particles existed within each sample and therefore the entire wall particle layer. This suggests that the wall layer was formed through layering between positively and negatively charged particles. Particles in the bulk of the bed also consisted of bipolarly charged particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号