首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5526篇
  免费   121篇
  国内免费   27篇
化学   3964篇
晶体学   44篇
力学   116篇
数学   761篇
物理学   789篇
  2021年   30篇
  2020年   52篇
  2019年   53篇
  2018年   26篇
  2017年   30篇
  2016年   77篇
  2015年   75篇
  2014年   82篇
  2013年   218篇
  2012年   240篇
  2011年   327篇
  2010年   151篇
  2009年   121篇
  2008年   287篇
  2007年   341篇
  2006年   322篇
  2005年   324篇
  2004年   245篇
  2003年   240篇
  2002年   229篇
  2001年   73篇
  2000年   73篇
  1999年   76篇
  1998年   71篇
  1997年   70篇
  1996年   124篇
  1995年   85篇
  1994年   67篇
  1993年   83篇
  1992年   72篇
  1991年   55篇
  1990年   59篇
  1989年   59篇
  1988年   57篇
  1987年   53篇
  1986年   58篇
  1985年   90篇
  1984年   91篇
  1983年   49篇
  1982年   78篇
  1981年   63篇
  1980年   65篇
  1979年   66篇
  1978年   65篇
  1977年   54篇
  1976年   52篇
  1975年   71篇
  1974年   67篇
  1973年   44篇
  1972年   25篇
排序方式: 共有5674条查询结果,搜索用时 312 毫秒
101.
The potential energy surface of He2Ne+ has been reinvestigated using a combination of ab initio and diatomics-in-molecule (DIM) calculations. In contrast to the reports of two recent studies the ion is found to have an asymmetric linear He-Ne-He structure, with no barrier to formation from the separated atoms on the ground-state surface. The He-Ne+ bond lengths at the potential minimum are 1.51 and 1.81 A, and the total bonding energy is 0.717 eV. Comparing the He2Ne+ energy to that of HeNe+, the bonding energy for the second helium atom is 0.06 eV, about 10% of that of the first He atom. The saddle point between the two equivalent minima is a symmetric structure, 0.0074 eV above the potential minimum. A symmetric geometry becomes the overall potential minimum if the 2s hole on the Ne is excluded from the reference states of a multireference configuration interaction calculation. A DIM potential was created for the HenNe+ family of ions. The DIM potential is consistent with the asymmetric He2Ne+ ion serving as a core; it predicts a slightly more asymmetric geometry than the ab initio results. Additional helium atoms form five-membered rings around the bonds of the core ion to fill the first shell and then add to the ends of the cluster. The asymmetric core ion and the highly compact structure help to account for the lack of apparent shell structure in the mass spectrometry of HenNe+ clusters. Finally, we recommend that the value De=0.63+/-0.04 eV be adopted for the ground state of HeNe+.  相似文献   
102.
Porous MoS2 synthesized by ultrasonic spray pyrolysis   总被引:1,自引:0,他引:1  
The hydrodesulfurization (HDS) activity of molybdenum sulfide-based catalysts is localized to the edges of this layered solid and is, therefore, highly dependent on the technique used to prepare the material. Here, ultrasonic spray pyrolysis (USP) was used to synthesize porous, nanostructured MoS2. Low surface area powders, not useful for catalysis, are generally produced by USP. This work shows that when combined with a dissolvable template, USP is capable of producing high surface area materials. An aqueous solution of ammonium tetrathiomolybdate and colloidal silica was nebulized and pyrolyzed to give a MoS2/SiO2 composite material. Leaching with HF removed the sacrificial SiO2, resulting in a highly porous MoS2 network with surface areas as high as 250 m2/g. Cobalt-promoted MoS2 networks were also synthesized. The thiophene HDS activities of these materials were substantially higher than those of unsupported MoS2 and RuS2 standards, illustrating the enhanced dispersion of the HDS active phase achieved by this synthetic technique.  相似文献   
103.
Apparent molar volumes of aqueous solutions of argon and xenon have been calculated using a previously developed comprehensive equation of state for nonelectrolyte systems. The equation consists of a virial expansion truncated after the fourth virial coefficient and a closed-form term approximating higher coefficients. Mixing rules are based on the composition dependence of virial coefficients, which is known from statistical mechanics. The equation accurately represents vapor-liquid and gas-gas equilibria for the Ar+H2O and Xe+H2O systems over wide ranges of pressure and temperature using two binary parameters. With the binary parameters determined from phase equilibrium data, the equation accurately predicts apparent molar volumes V in the near-critical and far-from-critical regions. Apart from reproducing experimental V data, the equation reveals remarkable maxima of V as a function of pressure and temperature in the near-critical region. The implications of this equation with respect to the Ar–H2O potential are discussed via the second virial coefficient.  相似文献   
104.
The assembly of thioacetyl-terminated oligo(phenylene ethynylene)s (OPEs) on Au and Pt surfaces under an electric potential (electrochemical assembly, EA) was compared to assembly at an open circuit (conventional self-assembly, CSA). Cyclic voltammetry and ellipsometry were used to characterize the adsorption kinetics of self-assembled monolayers formed by these two techniques. The adsorption rate of the EA was remarkably faster at positive potentials but slower at negative potentials than that of the CSA, The EA at 400 mV proceeded about 800 times faster than the CSA when exposed to the same solution concentrations. The adsorption rates of both EA and CSA were found to be dependent on the molecular structures of OPEs. OPEs containing electron-donating groups assemble faster than those with electron-withdrawing groups. The amount of time that the thioacetyl-terminated OPE is in the presence of the base, for removal of the acetyl group to generate the thiolate, is called the deprotection time. Deprotection times play a critical role in achieving the maximum difference in adsorption rates between the EA and the CSA. The assembly must be initiated no later than 5 min after the basic deprotection is commenced so that the thiolate concentration remains low. The difference in the adsorption rates between EA and CSA might enable selective deposition of certain OPEs onto specific electrodes.  相似文献   
105.
The alpha,alpha'-stabilized carbanion complexes [PhSO(2)CHCNNa.THF], 3, [t-BuSO(2)CHCNNa], 4, [PhSO(2)CHCNK], 5, [t-BuSO(2)CHCNK], 6, and [MeSO(2)CHCNLi.TMEDA], 7, have been synthesized via the metalation of the parent (organo)sulfonylacetonitriles by BuLi, BuNa, or BnK in THF solution (or THF/TMEDA in the case of 7). In addition, complexes 3 and 7 have been characterized by single-crystal X-ray analyses and have been found to adopt related structures in the solid state. Complex 7 is a molecular dimer containing a central 12-membered (OSCCNLi)(2) ring core, with each metal rendered tetracoordinate by binding to a chelating TMEDA molecule. As found in related complexes, no direct carbanion to lithium contacts are present in the structure of 7. Complex 3 forms a polymeric cage structure composed of associated "dimeric" (OSCCNNa)(2) rings, similar to those found in 7. The larger sodium cations, and the presence of only one THF molecule/metal, allow additional contacts with the anions, leading to hexacoordination at the metal centers. These contacts include long-range transannular Na-N interactions (2.8042(14) A) across the central dimeric ring and "interdimer" Na-C connections (2.8718(15) A). Dissolution of complexes 3-6 and their lithiated derivatives [PhSO(2)CHCNLi.TMEDA], 1, and [t-BuSO(2)CHCNLi.THF], 2, in DMSO-d(6) results in almost identical chemical shifts for each type of ligand. This suggests that charge-separated complexes of the form [RSO(2)CHCN](-)[M(DMSO-d(6))(n)()](+) are formed in highly polar solution.  相似文献   
106.
Maytansine and its congeners have been isolated from higher plants, mosses and from an Actinomycete, Actinosynnema pretiosum. Many of these compounds are antitumor agents of extraordinary potency, yet phase II clinical trials with maytansine proved disappointing. The chemistry and biology of maytansinoids has been reviewed repeatedly in the late 1970s and early 1980s; the present review covers new developments in this field during the last two decades. These include the use of maytansinoids as "warheads" in tumor-specific antibodies, preliminary metabolism studies, investigations of their biosynthesis at the biochemical and genetic level, and ecological issues related to the occurrence of such typical microbial metabolites in higher plants.  相似文献   
107.
[reaction: see text] A new method for synthesizing the 2-spiro-boraadamantane pyridine complex (2) from 1-ethynylcyclohexylmethyl ether has been developed. The chemistry has been applied to the synthesis of bis-2-spiro-1-boraadamantane.pyridine (1) from trans-1,4-diethynyl-1,4-dimethoxycyclohexane (8). This bis-Lewis acid serves as a self-assembling molecular building block with difunctional Lewis bases.  相似文献   
108.
The known complex, trans-(η-C5H5)2Rh2(CO)2(CF3C2CF3) is formed in high yield from (η-C5H5)Rh(CO)2 and CF3FCCF3 at 100°. The less stable cis-isomer of the complex is obtained in low yield from the same reaction. The infrared, 1H, 19F and 13C NMR spectra of the two isomers are compared. The trans-isomer undergoes CO scrambling in solution at room temperature, and the variable temperature 13C NMR spectra are consistent with a pairwise bridge opening and closing mechanism. The mechanism is extended to account for the isomerization of cis to trans isomer, whihc has a half-life of 12 h at room temperature. The 13C spectrum indicates that the cis-isomer is static in solution at room temperature. The trans-isomer is reversibly protonated by protonic acids, and BF4? and PF6? salts of the protonated species can be isolated. The spectroscopic properties of these salts are consistent with protonation at one of the alkynyl-carbons, but it is not possible to distinguish between two alternative structures for the complex cation.Treatment of (η-C5H5)2Rh2(CO)2(CF3C2CF3) with (η-C5H5)Rh(CO)2 gives the trinuclear complex (η-C5H5)3Rh3(CO)(CF3C2CF3) in 80% yield. The analogoug but-2-yne complex is formed from (η-C5H5)3Rh3(CO)3 and MeCCMe. The infrared, 1H, 19F and 13C NMR spectra indicate that the hexafluorobut-2-yne complex exists in two different structural arrangements in solution. One has an edge bridging, and the other a face bridging carbonyl. The proportion of the isomers is affected by the solvent polarity. The spectra of the but-2-yne complex indicate it is fluxional at room temperature, and has a face bridging structure in solution regardless of the polarity of the solvent. Reversible protonation of the hexafluorobut-2-yne complex occurs in protonic acids, and the salt [(η-C5H5)3Rh3(CO)(CF3C2CF3)H]+[BF4]?,H2O can be isolated. The spectroscopic properties of this complex are consistent with a structure incorporating an edge-bridging carbonyl, and probably, an edge-bridging hydride ligand.  相似文献   
109.
The dynamics of the product channels forming OCF(+)+H(+)+HF and HCF(2) (+)+H(+)+O following the collisions of CF(2) (2+) with H(2)O have been investigated with a new position-sensitive coincidence experiment at a center-of-mass collision energy of 5.6 eV. The results show the formation of OCF(+) occurs via the formation of a doubly charged collision complex [H(2)O-CF(2)](2+) which subsequently undergoes a charge separating dissociation to form H(+) and HOCF(2) (+). The HOCF(2) (+) monocation subsequently fragments to form HF+OCF(+). The lifetimes of the collision complex and the HOCF(2) (+) ion are at least of the order of their rotational period. The kinetic energy release in this reaction indicates that it involves the ground state of CF(2) (2+) and forms the ground electronic states of OCF(+) and HF. The mechanism for forming HCF(2) (+) involves the direct and rapid abstraction of a hydride ion from H(2)O by CF(2) (2+). The resulting OH(+) ion subsequently fragments to H(+)+O, on a time scale at least comparable with its rotational period.  相似文献   
110.
The biochemical transport and binding of nicotine depends on the hydrogen bonding between water and binding site residues to the pyridine ring and the protonated pyrrolidinium ring. To test the independence of these two moderately separated hydrogen-bonding sites, we have calculated the structures of clusters of protonated nicotine with water and a bicarbonate anion, benzene, indole, or a second water molecule. Unprotonated nicotine-water clusters have also been studied for contrast. The potential energy surfaces are first explored with an intermolecular anisotropic atom-atom model potential. Full geometry optimizations are then carried out using density functional theory to include nonadditive terms in the interaction energies. The presence of the charge on the pyrrolidine nitrogen removes the conventional hydrogen-bonding site on the pyridine ring. The hydrogen-bond ability of this site is nearly recovered when the protonated pyrrolidinium ring is bound to a bicarbonate anion, whereas its interaction with benzene shows a much smaller effect. Indole appears to partially restore the hydrogen-bond ability of the pyridine nitrogen, although indole and benzene both pi-bond to the pyrrolidinium ring. A second hydrogen-bonding water produces a significant conformational distortion of the nicotine. This demonstrates the limitations of the conventional qualitative predictions of hydrogen bonding based on the independence of molecular fragments. It also provides benchmarks for the development of atomistic modeling of biochemical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号