首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   0篇
化学   132篇
晶体学   1篇
力学   5篇
数学   25篇
物理学   34篇
  2024年   3篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   14篇
  2011年   16篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   6篇
  2005年   3篇
  2004年   9篇
  2003年   4篇
  2002年   9篇
  2001年   3篇
  2000年   7篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1994年   5篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1968年   2篇
  1962年   2篇
  1933年   1篇
  1930年   2篇
  1929年   1篇
  1928年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
101.
We report measurements of the anisotropy of the spin echo decay for the inner layer Cu site of the triple layer cuprate Hg(0.8)Re(0.2)Ba(2)Ca(2)Cu(3)O(8) (T(c)=126 K). The angular dependence of the second moment (T(-2)(2M) identical with ) deduced from the decay curves indicates that T(-2)(2M) for H0 parallel c is enhanced in the pseudogap regime below T(pg) approximately 170 K, as seen in bilayer systems. Comparison of T(-2)(2M) between H0 parallel c and H0 perpendicular c indicates that this enhancement is caused by electron spin correlations between the inner and the outer CuO2 layers. The results provide the answer to the long-standing controversy regarding the opposite T dependences of (T1T)(-1) and T(-2)(2G) (T(2G): Gaussian component) in the pseudogap regime of multilayer systems.  相似文献   
102.
Resonant scattering from dielectric bispheres in the specular direction (the so-called specular resonance), previously known only in the microwave range, has been observed at the optical wavelength. Systematic experiments with micrometer-sized dielectric bispheres assembled by micromanipulation, together with rigorous numerical calculations, reveal that this scattering is a precursor of the classical rainbow and is a general phenomenon observed in the wide range of size parameters (>5 for n=1.59) for various refractive indices.  相似文献   
103.
Hydrogen-gas etching of a 6H-SiC(0001) surface and subsequent annealing in nitrogen atmosphere leads to the formation of a silicon oxynitride (SiON) epitaxial layer. A quantitative low-energy electron diffraction analysis revealed that the SiON layer has a hetero-double-layer structure: a silicate monolayer on a silicon nitride monolayer via Si-O-Si bridge bonds. There are no dangling bonds in the unit cell, which explains the fact that the structure is robust against air exposure. Scanning tunneling spectroscopy measured on the SiON layer shows a bulk SiO2-like band gap of approximately 9 eV. Great potential of this new epitaxial layer for device applications is described.  相似文献   
104.
The thermal conductivity of diatomic liquids was analyzed using a nonequilibrium molecular dynamics (NEMD) method. Five liquids, namely, O2, CO, CS2, Cl2 and Br2, were assumed. The two-center Lennard-Jones (2CLJ) model was used to express the intermolecular potential acting on liquid molecules. First, the equation of state of each liquid was obtained using MD simulation, and the critical temperature, density and pressure of each liquid were determined. Heat conduction of each liquid at various liquid states [metastable (ρ=1.9ρcr), saturated (ρ=2.1ρcr), and stable (ρ=2.3ρcr)] at T=0.7Tcr was simulated and the thermal conductivity was estimated. These values were compared with experimental results and it was confirmed that the simulated results were consistent with the experimental data within 10%. Obtained thermal conductivities at saturated state were reduced by the critical temperature, density and mass of molecules and these values were compared with each other. It was found that the reduced thermal conductivity increased with the increase in the molecular elongation. Detailed analysis of the molecular contribution to the thermal conductivity revealed that the contribution of the heat flux caused by energy transport and by translational energy transfer to the thermal conductivity is independent of the molecular elongation while the contribution of the heat flux caused by rotational energy transfer to the thermal conductivity increases with the increase in the molecular elongation. Moreover, by comparing the reduced thermal conductivity at various states, it was found that the increase of thermal conductivity with the increase in the density, or pressure, was caused by the increase of the contribution of energy transfer due to molecular interaction.  相似文献   
105.
    
We systematically synthesized bioluminogenic substrates bearing an amino group on benzothiazole, quinoline, naphthalene, and coumarin scaffolds. They emit bioluminescence in various colors: red, orange, yellow, and green. An amino‐substituted coumarylluciferin derivative, coumarylaminoluciferin (CAL), showed the shortest bioluminescence wavelength among substrates reported so far. Further, the fluorescence of CAL did not exhibit solvatochromism, which suggests that its bioluminescence is not susceptible to environmental factors. We applied CAL as an energy‐donor substrate for a bioluminescence resonance energy transfer (BRET) system with click beetle red luciferase (CBRluc), a mutant of firefly luciferase, as the energy‐donor enzyme and yellow fluorescent protein (YFP) as the energy‐acceptor fluorophore, and obtained a clearly bimodal bioluminescence spectrum. Stable bioluminescence that is not influenced by environmental factors is highly desirable for reliable measurements in biological assays.  相似文献   
106.
Simple low molecular weight (MW) chelates of Gd(3+) such as those currently used in clinical MRI are considered too insensitive for most molecular imaging applications. Here, we evaluated the detection limit (DL) of a molecularly targeted low MW Gd(3+)-based T(1) agent in a model where the receptor concentration was precisely known. The data demonstrate that receptors clustered together to form a microdomain of high local concentration can be imaged successfully even when the bulk concentration of the receptor is quite low. A GdDO3A-peptide identified by phage display to target the anti-FLAG antibody was synthesized, purified and characterized. T(1-)weighted MR images were compared with the agent bound to antibody in bulk solution and with the agent bound to the antibody localized on agarose beads. Fluorescence competition binding assays show that the agent has a high binding affinity (K(D)=150 nM) for the antibody, while the fully bound relaxivity of the GdDO3A-peptide/anti-FLAG antibody in solution was a relatively modest 17 mM(-1) s(-1). The agent/antibody complex was MR silent at concentrations below approximately 9 microM but was detectable down to 4 microM bulk concentrations when presented to antibody clustered together on the surface of agarose beads. These results provided an estimate of the DLs for other T(1)-based agents with higher fully bound relaxivities or multimeric structures bound to clustered receptor molecules. The results demonstrate that the sensitivity of molecularly targeted contrast agents depends on the local microdomain concentration of the target protein and the molecular relaxivity of the bound complex. A model is presented, which predicts that for a molecularly targeted agent consisting of a single Gd(3+) complex with bound relaxivity of 100 mM(-1) s(-1) or, more reasonably, four tethered Gd(3+) complexes each having a bound relaxivity of 25 mM(-1) s(-1), the DL of a protein microdomain is approximately 690 nM at 9.4 T. These experimental and extrapolated DLs are both well below current literature estimates and suggests that detection of low MW molecularly targeted T(1) agents is not an unrealistic goal.  相似文献   
107.
A study was made to see if it is possible to enhance the heat transfer in the downstream region of a backward-facing step, where heat transfer is normally deteriorated, by the insertion of a cylinder near the top corner of the step. Cylinder size and streamwise position of the cylinder were kept constant but the cross-stream position of the cylinder was changed in three steps. Results of the heat transfer experiment, flow visualization, and measurement of the averaged and fluctuating flow fields were reported. When the cylinder was mounted at a position, a little higher than the top surface of the step, a jet-like flow pattern emerged in the averaged velocity profile beneath the cylinder and the recirculating flow was intensified. Therefore, the velocity of recirculating flow near the wall is increased at some streamwise positions. Additionally, the velocity fluctuation was intensified not only in the shear layer between the jet-like flow and the recirculating flow regions but also in the near wall region, resulting in the effective augmentation of heat transfer in this case. Therefore, it is concluded that the mounting of a cylinder is effective in the enhancement of deteriorated heat transfer in the recirculating flow region, if its is mounted in a proper position.  相似文献   
108.
The cyclodextrin-dihydronicotinamde had a dihydronicotinamde group at the open side of cyclodextrin cavity, and showed a large rate enhancement in the reduction of substrate upon complexation comparing with NADH.  相似文献   
109.
Photocatalysis of a hollandite compound KxGaxSn8–xO16 (x = ca. 1.8) was examined for the reduction of nitrate to N2 with a reducing agent of methanol in water under UV irradiation. Hollandites have a characteristic one-dimensional tunnel structure. The meso-porous hollandite was prepared by sol-gel method. This hollandite was used as the photocatalyst and its reaction process was quantitatively analyzed by using ion chromatograph and on-line mass spectrometry. The hollandite photocatalyst showed a significant activity for the formation of N2 from NO3. Two factors, an increase in UV intensity and a lowering in pH of the solution, contributed to improvement in the selectivity for N2. The selectivity for N2 was improved to reach the perfect level by adjusting the factors. Although, in the previous report, the nitrate was mainly reduced to NH4+ or NO2, the present photocatalytic conditions converted it to N2. The observed photocatalytic reduction of NO3 to N2 with reducing agent CH3OH was conjugated to the partial oxidation of CH3OH to HCOOH. This high selective photocatalytic decomposition of NO3 to N2 may be a new pathway among the others reported so far, and it would be useful for environmental protection of water.  相似文献   
110.
In the title compound, C15H32O2, one of the terminal hydroxyl groups has a gauche conformation with respect to the hydro­carbon skeleton, while the other is trans. The mol­ecules lie parallel to the longest axis and form layers similar to those of the smectic A structure of liquid crystals. These features are similar to those of the homologues with an odd number of C atoms, but different from those with an even number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号