首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4637篇
  免费   144篇
  国内免费   40篇
化学   3133篇
晶体学   35篇
力学   84篇
数学   606篇
物理学   963篇
  2022年   19篇
  2021年   41篇
  2020年   47篇
  2019年   65篇
  2018年   44篇
  2017年   36篇
  2016年   88篇
  2015年   91篇
  2014年   101篇
  2013年   228篇
  2012年   269篇
  2011年   307篇
  2010年   157篇
  2009年   140篇
  2008年   242篇
  2007年   281篇
  2006年   275篇
  2005年   232篇
  2004年   219篇
  2003年   151篇
  2002年   135篇
  2001年   75篇
  2000年   53篇
  1999年   47篇
  1998年   48篇
  1997年   46篇
  1996年   80篇
  1995年   75篇
  1994年   66篇
  1993年   55篇
  1992年   57篇
  1991年   56篇
  1990年   30篇
  1989年   28篇
  1988年   31篇
  1987年   36篇
  1986年   35篇
  1985年   55篇
  1984年   66篇
  1983年   46篇
  1982年   59篇
  1981年   60篇
  1980年   51篇
  1979年   59篇
  1978年   64篇
  1977年   42篇
  1976年   52篇
  1975年   51篇
  1974年   31篇
  1973年   34篇
排序方式: 共有4821条查询结果,搜索用时 62 毫秒
41.
Results on inclusive ? production inK ? p interactions at 110 GeV/c are presented. The production cross section is found to be larger than in πp andpp interactions at similar energies, suggesting OZI allowed \(s\bar s\) fusion to be the dominant mechanism in ? production. Thex distributions of ? and \(\bar K^{*0} \) are found to be similar to each other over the entirex range suggesting an overall strangeness suppression factor of 0.20±0.04 in the sea to be the dominant source of the difference in the cross section for ? and \(\bar K^{*0} \) . There is no evidence of a narrowφπ ? state around 2.1 GeV/c2 as suggested byK + experiments, but there is some excess of events in the region 1.94?1.98 GeV/c2 consistent with theF-meson mass as observed ine + e ? experiments.  相似文献   
42.
The slow reaction between peroxodisulfate and formate is significantly accelerated by ascorbate at room temperature. The products of this induced oxidation, CO2 and oxalate (C2O2– 4), were analyzed by several methods and the kinetics of this reaction were measured. The overall mechanism involves free radical species. Ascorbate reacts with peroxodisulfate to initiate production of the sulfate radical ion (SO 4), which reacts with formate to produce carbon dioxide radical ion (CO 2) and sulfate. The carbon dioxide radical reacts with peroxodisulfate to form CO2 or self-combines to form oxalate. Competition occurring between these two processes determines the overall fate of the carbon dioxide radical species. As pH decreases, protonation of the carbon dioxide radical ion tends to favor production of CO2.  相似文献   
43.
Compensation of refocusing inefficiency in a gHMBC experiment by replacing the rectangular pi pulse with a pair of adiabatic pulses with synchronized inversion sweep (CRISIS) significantly improves the performance of the gHMBC experiment. The CRISIS-gHMBC experiment retains the pure absorptive shapes in F1 and hence results in better lineshape and higher resolution than the current versions of magnitude mode gHMBC spectra. When used as a broadband experiment, CRISIS-gHMBC, owing to better refocusing efficiency of the adiabatic pulse pairs, gives improved performance across the 13C spectral width. Moreover, it is shown that CRISIS-gHMBC is a robust and improved alternative and when used along with the IMPRESS (Improved Resolution using Symmetrically Shifted pulses) technique further increases the sensitivity and resolution without additional experimental time. The IMPRESS-CRISIS combination is demonstrated for broadband gHMBC and band-selective gHMBC experiments. The ICbs-gHMBC [IMPRESS-CRISIS-band-selective gHMBC] experiment is an attractive and better alternative to individual band-selective gHMBC.  相似文献   
44.
The reaction of hexakis(2-pyridyloxy)cyclotriphosphazene (L) and hexakis(4-methyl-2-pyridyloxy)cyclotriphosphazene (MeL) with copper(ii) chloride afford the complexes [CuLCl(2)], [(CuCl(2))(2)(MeL)], [CuLCl]PF(6) and [Cu(MeL)Cl]PF(6). The single-crystal X-ray structure of [CuLCl(2)] shows the copper ion to be in a square based pyramidal distorted trigonal bipyramidal (SBPDTBP) environment (tau= 0.47) with L acting as a kappa(3)N donor, coordinating via the nitrogen atoms from two non-geminal pyridyloxy pendant arms, a nitrogen atom in the phosphazene ring and two chloride ions. In the dimetallic complex, [(CuCl(2))(2)(MeL)], the geometry about both (symmetry related) copper(ii) centres is also SBPDTBP (tau= 0.57) with a 'N(3)Cl(2)' donor set. In the monocation of [CuLCl]PF(6), L acts as a kappa(5)N donor, bonding to the copper(ii) centre through the nitrogen atoms of four pyridyloxy pendant arms, a phosphazene ring nitrogen atom and a chloride ion to give an elongated rhombic octahedral coordination sphere. The phosphazene ring atoms remain virtually coplanar in all three structures as a consequence of the phenoxy-hinge, which links the pyridine pendant donors to the cyclotriphosphazene platform, allowing the formation of six-membered chelate rings. The spectroscopic (mass spectral, EPR and electronic) and magnetic properties of the complexes are discussed. The EPR and variable temperature magnetic susceptibility results for the dicopper complex, [(CuCl(2))(2)(MeL)], point to a very weak electronic interaction between the metal atoms.  相似文献   
45.
A much improved synthesis of the heretofore difficultly obtainable 2,6-diaminopyrazine (4) was afforded by the low-pressure catalytic hydrogenation (palladium on carbon) of 2,6-diazido-pyrazine (2) ; reaction of 2,6-dichloropyrazine (1) and sodium azide gave 2 in 84% yield. The outcome of the reduction was found to be solvent dependent: 1,2-dimethoxyethane containing aqueous ammonia gave 4 in 83% yield; 1,2-dimethoxyethane alone gave 5-aminotetrazolo[1,5-a]-pyrazine (3) in 26% yield. Additional alternative syntheses of 3 and 4 are described. A number of acyl and azo derivatives of 4 were prepared. Reactions of 2 with dimethyl acetylenedicarboxylate and ethyl acetate (base catalyzed) leading to vic-triazole derivatives are also described.  相似文献   
46.
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, Delta(HL). We show that Delta(HL) is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in Delta(HL) to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.  相似文献   
47.
The thermal unimolecular decomposition of hex-1-ene-3-yne (HEY) has been investigated over the temperature range 949–1230 K using the technique of very low-pressure pyrolysis (VLPP). One reaction pathway is the expected C5? C6 bond fission to form the resonance-stabilized 3-ethenylpropargyl radical. There is a concurrent process producing molecular hydrogen which probably occurs via the intermediate formation of hexatrienes and cyclohexa-1,3-diene. RRKM calculations yield the extrapolated high-pressure rate parameters at 1100 K given by the expressions 1016.0±0.3 exp(?300.4 ± 12.6 kJ mol?1/RT) s?1 for bond fission and 1013.2+0.4 exp(?247.7 ± 8.4 kJ mol?1/RT) for the overall formation of hydrogen. The A factors were assigned from the results of previous studies of related alkynes, alkenes, and alkadienes. The activation energy for the bond fission reaction leads to ΔH [H2CCHCC?H2] = 391.9, DH [H2CCHCCCH2? H] = 363.3, and a resonance stabilization energy of 56.9 ± 14.0 kJ mol?1 for the 3-ethenylpropargyl radical, based on a value of 420.2 kJ mol?1 for the primary C? H bond dissociation energy in alkanes. Comparison with the revised value of 46.6 kJ mol?1 for the resonance energy of the unsubstituted propargyl radical indicates that the ethenyl substituent (CH2?CH) on the terminal carbon atom has only a small effect on the propargyl resonance energy. © John Wiley & Sons, Inc.  相似文献   
48.
The nickel(1) complex, Ni(teta)+, formed by cathodic reduction of the corresponding nickel(11) complex, reacts rapidly with alkyl bromides to form an unstable intermediate containing a nickelcarbon bond. When the electrolysis medium also contains an activated olefin an insertion reaction occurs. The new metalcarbon bond is cleaved by further reduction and overall the reduction of Ni(teta)2+ in the presence of RBr and CH2CHY leads to high yiels of RCH2CH2Y.  相似文献   
49.
Asphaltenes from four different crude oils (Arab Heavy, B6, Canadon Seco, and Hondo) were fractionated in mixtures of heptane and toluene and analyzed chemically, by vapor pressure osmometry (VPO), and by small angle neutron scattering (SANS). Solubility profiles of the asphaltenes and their subfractions indicated strong cooperative asphaltene interactions of a particular subfraction that is polar and hydrogen bonding. This subfraction had lower H/C ratios and modestly higher N, V, Ni, and Fe contents than the less polar and more soluble subfraction of asphaltenes. VPO and SANS studies indicated that the less soluble subfractions formed aggregates that were considerably larger than the more soluble subfractions. In general, asphaltene aggregate size increased with decreasing solvent aromaticity up to the solubility limit, beyond which the aggregate size decreased with heptane addition. The presence of a low wavevector Q feature in the scattering curves at 25 degrees C indicated that the individual aggregates were flocculating; however, the intensity of the feature was diminished upon heating of the samples to 80 degrees C. The solubility mechanism for Canadon Seco asphaltenes, the largest aggregate formers, appears to be dominated by aromatic pi-bonding interactions due to their low H/C ratio and low nitrogen content. B6 and Hondo asphaltenes formed similar-sized aggregates in heptol and the solubility mechanism is most likely driven by polar interactions due to their relatively high H/C ratios and high nitrogen contents. Arab Heavy, the least polar asphaltene, had a H/C ratio similar to Canadon Seco but formed the smallest aggregates in heptol. The enhancement in polar and pi-bonding interactions for the less soluble subfraction indicated by elemental analysis is reflected by the aggregate size from SANS. The less soluble asphaltenes contribute the majority of species responsible for aggregation and likely cause many petroleum production problems such as pipeline deposition and water-in-oil emulsion stabilization.  相似文献   
50.
Polymeric phosphonate esters are an interesting class of organophosphorus polymers because both the polymer backbone and phosphorus substituents can be modified. These polymers have been prepared by ring-opening polymerizations of cyclic phosphites, stoichiometric polycondensations of dimethyl phosphonate with diols in conjunction with diazomethane treatment and by transesterification of polyphosphonate oligomers. Our initial attempts to prepare high molecular weight polymeric phosphonate esters by the transesterification methods were unsuccessful. Results indicate that the reactions of dimethyl phosphonate with diols to form polyphosphonate oligomers with only methyl phosphonate end groups are plagued by a serious side reaction that forms phosphonic acid end groups. These end groups do not participate in the transesterification reaction and limit the molecular weights of the polymers that can be obtained. The phosphonic acid end groups can be converted into reactive methyl phosphonate end groups by treatment with diazomethane, however diazomethane is explosive and the polymerization is slow. An alternative route for the production of high molecular weight polymers is the transesterification of the 1,12-bis(methyl phosphonato)dodecane, formed by the reaction of excess dimethyl phosphonate and 1,12-dodecanediol, with a Na2CO3 promoter. This allows polymers with molecular weights of up to 4.5×104 to be prepared, and no phosphonic acid end groups are observed in these polymers. Thermal analyses of the poly(1,12-dodecamethylene phosphonate) have shown that this polymer has reasonable thermal stability (onset of thermal decomposition at 273 °C). This polymer also undergoes a cold crystallization process at 15 °C similar to that which has been observed in some polyesters, polyamides and elastomers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号