首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   0篇
化学   31篇
晶体学   1篇
力学   3篇
数学   8篇
物理学   35篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2012年   2篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1968年   1篇
  1933年   1篇
排序方式: 共有78条查询结果,搜索用时 187 毫秒
71.
The size (volume) of a large tetrametallic molecular square, that has resisted characterization by mass spectrometry, has been determined by pulsed-field gradient NMR spectroscopy, a technique that reports on self-diffusion coefficients. These scale inversely with hydrodynamic radii, which in turn scale approximately as the cube of the assembly's mass. The technique has also been used to determine whether NMR spectral complexities observed for the new compound are due to contamination with chemically related assemblies, or instead reflect the intrinsic structural complexities of the compound itself.  相似文献   
72.
This report describes the extent to which ear-canal acoustic admittance and energy reflectance (YR) in human neonates (1) predict otoacoustic emission (OAE) levels and auditory brainstem response (ABR) latencies, and (2) classify OAE and ABR responses as present or absent. Analyses are reported on a subset of ears in which hearing screening measurements were obtained previously [Norton et al., Ear. Hear. 21, 348-356 (2000a)]. Tests on 1405 ears included YR, distortion-product OAEs, transient-evoked OAEs, and ABR. Principal components analysis reduced the 33 YR variables to 5-7 factors. OAE levels decreased and ABR latencies increased with increasing high-frequency energy reflectance. Up to 28% of the variance in OAE levels and 12% of the variance in ABR wave-V latencies were explained by these factors. Thus, the YR response indirectly encodes information on inter-ear variations in forward and reverse middle-ear transmission. The YR factors classify OAEs with an area under the relative operating characteristic (ROC) curve as high as 0.79, suggesting that middle-ear dysfunction is partly responsible for the inability to record OAEs in some ears. The YR factors classified ABR responses less well, with ROC areas of 0.64 for predicting wave-V latency and 0.56 for predicting Fsp.  相似文献   
73.
Input-output (I/O) functions for stimulus-frequency (SFOAE) and distortion-product (DPOAE) otoacoustic emissions were recorded in 30 normal-hearing adult ears using a nonlinear residual method. SFOAEs were recorded at half octaves from 500-8000 Hz in an L1=L2 paradigm with L2=0 to 85 dB SPL, and in a paradigm with L1 fixed and L2 varied. DPOAEs were elicited with primary levels of Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] at f2 frequencies of 2000 and 4000 Hz. Interpretable SFOAE responses were obtained from 1000-6000 Hz in the equal-level paradigm. SFOAE levels were larger than DPOAEs levels, signal-to-noise ratios were smaller, and I/O functions were less compressive. A two-slope model of SFOAE I/O functions predicted the low-level round-trip attenuation, the breakpoint between linearity and compression, and compressive slope. In ear but not coupler recordings, the noise at the SFOAE frequency increased with increasing level (above 60 dB SPL), whereas noise at adjacent frequencies did not. This suggests the existence of a source of signal-dependent noise producing cochlear variability, which is predicted to influence basilar-membrane motion and neural responses. A repeatable pattern of notched SFOAE I/O functions was present in some ears, and explained using a two-source mechanism of SFOAE generation.  相似文献   
74.
A frequency-domain based system for measuring acoustic impedance and reflection coefficient is described. The calibration procedure uses a least-mean-squares approximation to the Thevenin parameters describing the source and receiver characteristics in which the data measured on closed, cylindrical tubes are matched to a viscothermal tube model. The system is intended for use in acoustical measurement in human ear canals, in which the cross-sectional area of the ear canal at the point of insertion is imprecisely known. This area is acoustically estimated from the impedance data, and the reflection coefficient is calculated in terms of this area and the impedance data. Measurements on a variety of closed tubes show the method is accurate over the frequency range investigated (less than 10.7 kHz). The time-domain reflection function is evaluated by transforming the reflection coefficient from the frequency domain, but the finite bandwidth of the measured data limits the accuracy of time-domain response measurements. The method is well suited for frequency-domain measurements in human ear canals.  相似文献   
75.
The Kramers-Kronig transformation has been extensively applied in optical spectroscopy to calculate the real component of an optical quantity from the imaginary component, such as the real refractive index from the imaginary component, or vice versa. In this paper, the traditional proof of the Kramers-Kronig transformation, and its application to the complex refractive index, complex dielectric constant, and complex molar polarizability, are reviewed. Often the imaginary components of these quantities are fitted with standard lineshapes such as the Gaussian, Lorentzian, or Classical Damped Harmonic Oscillator (CDHO) lineshapes. It is shown that the usual Gaussian and Lorentzian lineshapes do not meet the physical criteria of these imaginary components nor the conditions of the Kramers-Kronig transformation since they are not odd functions of wavenumber. However, the CDHO lineshape meets the physical criteria of the imaginary components of these optical quantities and the Kramers-Kronig transformation. Modifications are presented that make the Gaussian and Lorentzian odd. The Gaussian decays so fast that the modification is not needed in practice; however, the Lorentzian is much slower to decay and thus modification is necessary whenever fitting peaks below approximately 250 cm(-1). Since the computational difference between the usual Lorentzian and modified Lorentzian is negligible, the author recommends that only the modified Lorentzian be used when fitting bands with a Lorentzian lineshape. Copyright 2001 Academic Press.  相似文献   
76.
This study evaluated the accuracy of acoustic response tests in predicting conductive hearing loss in 161 ears of subjects from the age of 2 to 10 yr, using as a "gold standard" the air-bone gap to classify ears as normal or impaired. The acoustic tests included tympanometric peak-compensated static admittance magnitude (SA) and tympanometric gradient at 226 Hz, and admittance-reflectance (YR) measurements from 0.5 to 8 kHz. The performance of individual, frequency-specific, YR test variables as predictors was assessed. By applying logistic regression (LR) and discriminant analysis (DA) techniques to the multivariate YR response, two univariate functions were calculated as the linear combinations of YR variables across frequency that best separated normal and impaired ears. The tympanometric and YR tests were also combined in a multivariate manner to test whether predictive efficacy improved when 226-Hz tympanometry was added to the predictor set. Conductive hearing loss was predicted based on air-bone gap thresholds at 0.5 and 2 kHz, and on a maximum air-bone gap at any octave frequency from 0.5 to 4 kHz. Each air-bone gap threshold ranged from 5 to 30 dB in 5-dB steps. Areas under the relative operating characteristic curve for DA and LR were larger than for reflectance at 2 kHz, SA and Gr. For constant hit rates of 80% and 90%, both DA and LR scores had lower false-alarm rates than tympanometric tests-LR achieved a false-alarm rate of 6% for a sensitivity of 90%. In general, LR outperformed DA as the multivariate technique of choice. In predicting an impairment at 0.5 kHz, the reflectance scores at 0.5 kHz were less accurate predictors than reflectance at 2 and 4 kHz. This supports the hypothesis that the 2-4-kHz range is a particularly sensitive indicator of middle-ear status, in agreement with the spectral composition of the output predictor from the multivariate analyses. When tympanometric and YR tests were combined, the resulting predictor performed slightly better or the same as the predictor calculated from the use of the YR test alone. The main conclusion is that these multivariate acoustic tests of the middle ear, which are analyzed using a clinical decision theory, are effective predictors of conductive hearing loss.  相似文献   
77.
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure.  相似文献   
78.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号