首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   30篇
  国内免费   1篇
化学   562篇
晶体学   3篇
力学   6篇
数学   88篇
物理学   81篇
  2023年   6篇
  2022年   8篇
  2021年   16篇
  2020年   13篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   34篇
  2015年   28篇
  2014年   26篇
  2013年   41篇
  2012年   62篇
  2011年   58篇
  2010年   53篇
  2009年   55篇
  2008年   60篇
  2007年   37篇
  2006年   45篇
  2005年   30篇
  2004年   27篇
  2003年   22篇
  2002年   18篇
  2001年   4篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有740条查询结果,搜索用时 31 毫秒
141.
The rare‐earth metal germanides RE2Ge9 (RE = Nd, Sm) have been prepared by thermal decomposition of the metastable high‐pressure phases REGe5 at ambient pressure. The compounds adopt an orthorhombic unit cell with a = 396.34(4) pm; b = 954.05(8) pm and c = 1238.4(1) pm for Nd2Ge9 and a = 395.46(7) pm; b = 946.4(2) pm and c = 1232.1(3) pm for Sm2Ge9. Crystal structure refinements reveal space group Pmmn (No. 59) for Nd2Ge9. The atomic pattern resembles an ordered defect variety of the pentagermanide motif REGe5 (RE = La; Nd, Sm, Gd, Tb) comprising corrugated germanium layers. These condense into a three‐dimensional network interconnected by eight‐coordinated germanium atoms. The resulting framework channels along [100] enclose the neodymium atoms. With respect to the atomic arrangement of the pentagermanides, half of the interlayer germanium atoms are eliminated in an ordered way so that occupied and empty germanium columns alternate along [001]. The rare‐earth metal atoms of both types of compounds, REGe5 and RE2Ge9, exhibit the electronic states 4f 3 and 4f 5 (oxidation state +3) for neodymium and samarium, respectively, evidencing that the modification of the germanium network leaves the electron configuration of the metal atoms unaffected.  相似文献   
142.
143.
Trans-acyltransferase polyketide synthases (trans-AT PKSs) are an important group of bacterial enzymes producing bioactive polyketides. One difference from textbook PKSs is the presence of one or more free-standing AT-like enzymes. While one homolog loads the PKS with malonyl units, the function of the second copy (AT2) was unknown. We studied the two ATs PedC and PedD involved in pederin biosynthesis in an uncultivated symbiont. PedD displayed malonyl- but not acetyltransferase activity toward various acyl carrier proteins (ACPs). In contrast, the AT2 PedC efficiently hydrolyzed acyl units bound to N-acetylcysteamine or ACP. It accepted substrates with various chain lengths and functionalizations but did not cleave malonyl-ACP. These data are consistent with the role of PedC in?PKS proofreading, suggesting a similar function for other AT2 homologs and providing strategies for?polyketide titer improvement and biosynthetic investigations.  相似文献   
144.
The synthesis and full characterization of a new heteroleptic N-heterocyclic carbene (NHC)-phosphine platinum(0) complex and formation of its corresponding alane adduct is reported. The influence of the ligands on the Lewis basic properties was studied via multinuclear NMR-spectroscopy, X-ray analyses, and density functional theory (DFT) calculations. Consistently, the effect of changing the halogens upon the Lewis acid properties of aluminum halides was studied by X-ray analysis and DFT calculations.  相似文献   
145.
Summary.  11-(4H-1,2,4-Triazol-4-yl)-undecylmethacrylate (1), a new ligand for Fe(II) spin-crossover (SCO) complexes containing a polymerizable group, was synthesized and characterized. The complex [Fe·1 3](BF4)2 (2) was obtained by reaction of 1 with Fe(BF4)2·6H2O (molar ratio 1/Fe(II) = 3/1) in THF. Complex 2 showed a gradual spin-crossover between 80 and 230 K. The methacrylate units in the ligands of complex 2 could be oligomerized radically in solution (initiator: azoisobutyronitrile) without loss of the spin-crossover behaviour. Received May 30, 2000. Accepted December 10, 2000  相似文献   
146.
147.
Summery: The potential of cycloaddition (CA) reactions for the synthesis of dendritic polymers is pointed out. The [4 + 2] Diels Alder cycloaddition as well as 1,3-dipolar CA reactions including “click chemistry” are addressed, and the advantages of these reactions like high selectivity, thus high tolerance towards additional functionalities, high yields and synthesis under mild reaction conditions are highlighted. New perfectly branched dendrimers as well as hyperbranched polymers have been prepared and modified using the 1,3-dipolar cycloaddition reaction of azines with alkynes. The 1,3-dipolar CA reaction of bisazine with maleimides results in hyperbranched and thus, irregular and broadly distributed polymers though with a degree of branching of 100% due to special intermediate formation. The [4 + 2] Diels Alder cycloaddition was successfully applied for the synthesis of highly branched polyphenylene structures using the AB2 + AB and the A2 + B3 approach. CA reactions are also very suitable for highly efficient polymer analogous reactions and thus, they can also be used to prepare complex polymer architectures like dendronized polymers.  相似文献   
148.
149.
Leishmaniasis is a vector-borne disease caused by protozoal Leishmania parasites. Previous studies have shown that endoperoxides (EP) can selectively kill Leishmania in host cells. Therefore, we studied in this work a set of new anthracene-derived EP (AcEP) together with their non-endoperoxidic analogs in model systems of Leishmania tarentolae promastigotes (LtP) and J774 macrophages for their antileishmanial activity and selectivity. The mechanism of effective compounds was explored by studying their reaction with iron (II) in chemical systems and in Leishmania. The correlation of structural parameters with activity demonstrated that in this compound set, active compounds had a LogPOW larger than 3.5 and a polar surface area smaller than 100 Å2. The most effective compounds (IC50 in LtP < 2 µM) with the highest selectivity (SI > 30) were pyridyl-/tert-butyl-substituted AcEP. Interestingly, also their analogs demonstrated activity and selectivity. In mechanistic studies, it was shown that EP were activated by iron in chemical systems and in LtP due to their EP group. However, the molecular structure beyond the EP group significantly contributed to their differential mitochondrial inhibition in Leishmania. The identified compound pairs are a good starting point for subsequent experiments in pathogenic Leishmania in vitro and in animal models.  相似文献   
150.
Targeted protein degradation (TPD), the ability to control a proteins fate by triggering its degradation in a highly selective and effective manner, has created tremendous excitement in chemical biology and drug discovery within the past decades. The TPD field is spearheaded by small molecule induced protein degradation with molecular glues and proteolysis targeting chimeras (PROTACs) paving the way to expand the druggable space and to create a new paradigm in drug discovery. However, besides the therapeutic angle of TPD a plethora of novel techniques to modulate and control protein levels have been developed. This enables chemical biologists to better understand protein function and to discover and verify new therapeutic targets. This Review gives a comprehensive overview of chemical biology techniques inducing TPD. It explains the strengths and weaknesses of these methods in the context of drug discovery and discusses their future potential from a medicinal chemist's perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号