首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   50篇
  国内免费   3篇
化学   724篇
晶体学   32篇
力学   12篇
数学   50篇
物理学   139篇
  2024年   3篇
  2023年   5篇
  2022年   15篇
  2021年   17篇
  2020年   11篇
  2019年   21篇
  2018年   32篇
  2017年   19篇
  2016年   24篇
  2015年   43篇
  2014年   25篇
  2013年   59篇
  2012年   66篇
  2011年   50篇
  2010年   28篇
  2009年   32篇
  2008年   39篇
  2007年   55篇
  2006年   43篇
  2005年   47篇
  2004年   32篇
  2003年   26篇
  2002年   40篇
  2001年   21篇
  2000年   18篇
  1999年   8篇
  1998年   11篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   18篇
  1991年   11篇
  1990年   12篇
  1989年   9篇
  1987年   5篇
  1986年   9篇
  1985年   4篇
  1984年   13篇
  1983年   13篇
  1982年   4篇
  1980年   3篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1969年   2篇
排序方式: 共有957条查询结果,搜索用时 296 毫秒
61.
Indirect electrochemical synthesis of quinone derivatives of a series of substituted anthracene and naphthalene by the electrolysis of aqueous solution of potassium bromide (3.0 M) using Pt anode at constant current density (40 mA/cm2) has been carried out. These reactions resulted in good to excellent yields of the corresponding para-quinones as confirmed by physical and spectral data.  相似文献   
62.
Green synthesis of nanoparticles by eco-friendly methods is a recent technique which draws the attention of researchers because of the reward over many conventional chemical methods. The present work focuses on aqueous Limonia acidissima leaf extract in synthesizing silver nanoparticles and its applications in a simple way. The silver nanoparticles formed were characterized by Infrared, Ultra violet-visible, X-ray diffraction, transmission electron microscopic, and atomic force microscopic techniques. The powder X-ray diffraction studies and transmission electron microscopic images reveal that the silver nanoparticles synthesized were approximately 10–40 nm and have a spherical structure. The nanoparticles were assayed for their antibacterial, antifungal and antioxidant activity. The antimicrobial studies for the silver nanoparticles show a maximum zone of inhibition of 8.8 mm for Bacillus subtilis bacteria and 8.5 mm for Candida albicans fungi at 3 and 1 μg/mL respectively. In-silico ADMET studies reveal that the toxicity, bioactivity, pharmacokinetics and drug-likeness properties of Limonia acidissima leaf extract is good. The molecular docking studies show that the microbial activity is high for Bacillus subtilis and Candida albicans showing the coincidence of the in silico and in vitro studies as expected. The free radical scavenging activity of nanoparticles is 80 for 100 μg/mL. The 50% of inhibition of silver nanoparticles against human breast cancer cell lines is 18 μg/mL. It is evident that silver nanoparticles would be helpful in treating cancer cell lines and have great perspectives in the biomedical sector.  相似文献   
63.

The present study pertained to biosynthesis, characterization and biomedical application (larvicidal, histopathology, antibacterial, antioxidant and anticancer activity) of Zinc oxide nanoparticles (ZnONPs) from Pleurotus djamor. The synthesized NPs were characterized using spectral and microscopic analyses and further confirmed by UV–Visible spectrophotometer with apeak of 350 nm. The ZnONPs showed strong antioxidant property (DPPH, H2O2 and ABTS+ radical assay) and expressed good larval toxicity against Ae. aegypti and Cx. quinquefasciatus (IVth instar larvae) with the least LC50 and LC90 values (10.1, 25.6 and 14.4, 31.7 mg/l) after 24 h treatment, respectively. We noticed the morphological changes (damaged anal papillae area and the cuticle layers) in the treated larvae. For the antibacterial assay, the highest growth inhibition zone was recorded in C. diphteriae (28.6?±?0.3 mm), followed by P. fluorescens (27?±?0.5 mm) and S. aureus (26.6?±?1.5 mm). The in vitro cytotoxicity assay depicted a significant level of cytotoxic effects (LC50 values 42.26 μg/ml) of ZnONPs against the A549 lung cancer cells, even at low dose. The overall findings of the study suggest that P. djamor had the ability for the biosynthesis of ZnONPs and could act as an alternative biomedical agent for future therapeutic applications in medical avenues.

  相似文献   
64.
A three-component, [3 + 2]-cycloaddition/annulation domino protocol is described for the synthesis in excellent yield of a polycyclic cage-like heterocyclic hybrid (PCHH) that comprises various advantaged structural units viz., α,β-unsaturated ketone moiety, 4-pyridinone and pyrroloisoquinoline in a cage-like framework. The antitumor activity of PCHH on human breast (MCF7), colon (HCT116), cervical (JURKAT) and lung (NCI-H460) malignant cell lines inhibited the propagation of all cell lines. This hybrid molecule displayed increased broad-spectrum anticancer activity with higher doses of PCHH. Furthermore, the compound induced 45.21% of early apoptosis and 46.32% of late apoptosis in the Jurkat cancer cell line. Cell cycle analysis showed that this cage-like compound caused cell cycle arrest of Jurkat cells at the S phase and sub G0/G1 phase. Additionally, it led to increased DNA fragmentation and mitochondrial membrane permeabilization through activation of caspase-3 enzyme. Present investigation demonstrates the specific cytotoxic activity of the cage-like compound and the induction of apoptosis through the intrinsic pathway of Jurkat cells.  相似文献   
65.
66.
The authors of the title paper (J Therm Anal Calorim 2012,110:873–878) report to have grown a dipeptide hydrochloride crystal namely glycyl-l-alanine hydrochloride by the slow evaporation of an aqueous solution containing stoichiometric amounts of l-alanine and glycine and an excess of hydrochloric acid. In this letter, we prove that no such dipeptide hydrochloride can be crystallized simply by mixing two amino acids in aqueous hydrochloric acid.  相似文献   
67.
Cucurbit[7]uril (CB[7]), an uncharged and water‐soluble macrocyclic host, binds protonated amino saccharides (D ‐glucosamine, D ‐galactosamine, D ‐mannosamine and 6‐amino‐6‐deoxy‐D ‐glucose) with excellent affinity (Ka=103 to 104 M ?1). The host–guest complexation was confirmed by NMR spectroscopy, isothermal titration calorimetry (ITC), and MALDI‐TOF mass spectral analyses. NMR analyses revealed that the amino saccharides, except D ‐mannosamine, are bound as α‐anomers within the CB[7] cavity. ITC analyses reveal that CB[7] has excellent affinity for binding amino saccharides in water. The maximum affinity was observed for D ‐galactosamine hydrochloride (Ka=1.6×104 M ?1). Such a strong affinity for any saccharide in water using a synthetic receptor is unprecedented, as is the supramolecular stabilization of an α‐anomer by the host.  相似文献   
68.
New hexa-coordinated Ru(III) complexes of the type [Ru(H2Pzdc)(EPh3)3X2] have been synthesized by reacting 3,5-pyrazole dicarboxylic acid (H3Pzdc) with the appropriate starting complexes [RuX3(EPh3)3] (where X = Cl or Br; E = P or As). The ligand behaves as a bidentate monobasic chelate. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and EPR) data. Single-crystal X-ray analysis of the complex [Ru(H2Pzdc)(PPh3)2Cl2]·C6H6·C2H5OH revealed that the coordination environment around the ruthenium center consists of an NOP2Cl2 octahedron. The planar ligand occupies the equatorial position along with two chlorine atoms, while the triphenylphosphine groups occupy the axial positions. The electrochemical behavior of the new complexes was studied using cyclic voltammetry. The new mononuclear ruthenium complexes are capable of acting as catalysts for the oxidation of alcohols.  相似文献   
69.
The motion of molecules across channels and pores is critically important for understanding mechanisms of many cellular processes. Here we investigate the mechanism of interactions in the molecular transport through nanopores by analyzing exactly solvable discrete stochastic models. According to this approach the channel transport is viewed as a set of chemical transitions between discrete states. It is shown that the strength and spatial distribution of molecule/channel interactions can strongly modify the particle current. Our analysis indicates that the most optimal transport is achieved when the binding sites are near the entrance or exit of the pore depending on the sign of interaction potential. In addition, the role of intermolecular interactions during the channel transport is studied, and it is argued that an increase in the flux can be observed for some optimal interaction strength. The mechanisms of these phenomena are discussed.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号