首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   12篇
  国内免费   21篇
化学   104篇
晶体学   1篇
力学   7篇
数学   51篇
物理学   86篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   5篇
  2013年   11篇
  2012年   17篇
  2011年   19篇
  2010年   10篇
  2009年   9篇
  2008年   21篇
  2007年   16篇
  2006年   8篇
  2005年   8篇
  2004年   13篇
  2003年   18篇
  2002年   17篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1982年   2篇
  1976年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
111.
刘忠 《中国物理 C》2001,25(9):845-849
通过410MeV 82Se轰击天然Ba靶引起的深部非弹反应布居产生了类弹和类靶余核的激发态,利用在束γ谱学方法测量了它们的退激γ.通过γ–γ符合测量估计了类弹、类靶余核激发态的产生截面,在多个类靶余核中观测到了新γ跃迁,并建立了136Ba的新能级纲图,说明利用深部非弹反应研究Z≈56,N≈80区高自旋态是有效、可行的.  相似文献   
112.
A novel and highly efficient dual‐targeting platform was designed to ensure targeted in vivo delivery of dual‐action PtIV prodrugs. The dual targeting was established by liposomal encapsulation of PtIV complexes, thereby utilizing the enhanced permeability and retention (EPR) effect as the first stage of targeting to attain a high accumulation of the drug‐loaded liposomes in the tumor. After the release of the PtIV prodrug inside cancer cells, a second stage of targeting directed a portion of the PtIV prodrugs to the mitochondria. Upon intracellular reduction, these PtIV prodrugs released two bioactive molecules, acting both on the mitochondrial and on the nuclear DNA. Our PtIV system showed excellent activity in vitro and in vivo, characterized by a cytotoxicity in a low micromolar range and complete tumor remission, respectively. Notably, marked in vivo activity was accompanied by reduced kidney toxicity, highlighting the unique therapeutic potential of our novel dual‐targeting dual‐action platform.  相似文献   
113.
Current antisense oligonucleotide (ASO) therapies for the treatment of central nervous system (CNS) disorders are performed through invasive administration, thereby placing a major burden on patients. To alleviate this burden, we herein report systemic ASO delivery to the brain by crossing the blood–brain barrier using glycemic control as an external trigger. Glucose‐coated polymeric nanocarriers, which can be bound by glucose transporter‐1 expressed on the brain capillary endothelial cells, are designed for stable encapsulation of ASOs, with a particle size of about 45 nm and an adequate glucose‐ligand density. The optimized nanocarrier efficiently accumulates in the brain tissue 1 h after intravenous administration and exhibits significant knockdown of a target long non‐coding RNA in various brain regions, including the cerebral cortex and hippocampus. These results demonstrate that the glucose‐modified polymeric nanocarriers enable noninvasive ASO administration to the brain for the treatment of CNS disorders.  相似文献   
114.
Real-time laser speckle shearography coupled with vibration stressing is shown to be an effective means of vibration analysis and non-destructive testing. The shearograms are modulated by a system of live fringes. These fringes are shown to be described by the zeroth-order Bessel function of the first kind and their visibility decreases with increasing fringe order. In vibration analysis, the instantaneous fringe pattern depicts the out-of-plane surface displacement gradient of the object surface at various resonance modes. In non-destructive testing, the flaw depth in a component can be determined without having to determine fringe orders. There is good agreement between the results obtained using the method and those from theory and time-average holography. A major advantage of real-time shearography is its facility for continuous assessment of a vibrating object without the need for secondary shearogram reconstruction.  相似文献   
115.
The eight members of the prostanoid receptor family belong to the class A G protein-coupled receptors. We investigated the evolutionary relationship of the eight members by a molecular phylogenetic analysis and found that prostaglandin E2 receptor subtype 2 (EP2) and prostaglandin D2 receptor (DP) were closely related. The structures of the ligands for the two receptors are similar to each other but are distinguished by the exchanged locations of the carbonyl oxygen and the hydroxy group in the cyclopentane ring. The ligand recognition mechanisms of the receptors were examined by an integrated approach using several computational methods, such as amino acid sequence comparison, homology modeling, docking simulation, and molecular dynamics simulation. The results revealed the similar location of the ligand between the two receptors. The common carboxy group of the ligands interacts with the Arg residue on the seventh transmembrane (TM) helix, which is invariant among the prostanoid receptors. EP2 uses a Ser on TM1 to recognize the carbonyl oxygen in the cyclopentane ring of the ligand. The Ser is specifically conserved within EP2. On the other hand, DP uses a Lys on TM2 to recognize the hydroxy group of the ?? chain of the ligand. The Lys is also specifically conserved within DP. The interaction network between the D(E)RY motif and TM6 was found in EP2. However, DP lacked this network, due to the mutation in the D(E)RY motif. Based on these observations and the previously published mutational studies on the motif, the possibility of another activation mechanism that does not involve the interaction between the D(E)RY motif and TM6 will be discussed.  相似文献   
116.
G-Protein Coupled Receptors (GPCRs) are one of the most important targets for pharmaceutical drug design. Over the past 30 years, mounting evidence has suggested the existence of homo and hetero dimers or higher-order complexes (oligomers) that are involved in signal transduction and some diseases. The number of reports describing GPCR oligomerization has increased, and in 2003, the organization of mouse rhodopsin into two-dimensional arrays of dimers was determined by an atomic force microscopic analysis. The analysis of the mouse rhodopsin complex has enabled us to discuss the oligomerization based on structural data. Although many unsolved problems still remains, the idea that GPCRs directly interact to form oligomers has been gradually accepted. One of the recent findings in the GPCR investigations is the clarification of the mechanisms of GPCR oligomerization at a molecular level. Most of these studies have suggested the importance of transmembrane alpha-helices for GPCR oligomerization. In this review, we will first summarize the importance of GPCR oligomerization and the functions of GPCRs. Then, we will explain the involvement of transmembrane alpha-helices in the oligomerization and a drug design strategy that targets these regions for GPCR oligomerization. Considering the current drug design methods, which are based on the modification of the protein-protein interactions of soluble regions of proteins, a "peptide mimic approach" that targets the transmembrane alpha-helices constituting the interfaces would be promising in drug discovery for GPCR oligomerization. For that purpose, we must know the positions of the interfaces. However, problems specific to membrane proteins have made it difficult to identify the positions of the interfaces experimentally. Therefore, information about the interfaces predicted by bioinformatics approaches is valuable. At the end of this review, several bioinformatics approaches toward interface prediction for oligomerization are introduced. The benefits and the pitfalls of these approaches are also discussed.  相似文献   
117.
Typical laser-dependent methods such as nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS) are not able to detect nanoparticles in an optically opaque medium due to scattering or absorption of light. Here, the electrochemical technique of ‘nano-impacts’ was used to detect nanoparticles in solution in the presence of high levels of alumina particulates causing a milky white suspension. Using the ‘nano-impacts’ method, silver nanoparticles were successfully detected and sized in the model opaque medium. The results obtained compared well with those using transmission electron microscopy (TEM), an ex situ method for nanoparticle size determination. The ability to use the ‘nano-impacts’ method in media unmeasurable to competitor techniques confers a significant advantage on the electrochemical approach.  相似文献   
118.
利用在束γ谱学技术和173Yb(18O, 4n)熔合蒸发反应研究了187Pt的高自旋态能级结构. 建立了包括3个转动带的187Pt高自旋态能级纲图. 基于187Pt周围核结构的系统学和比较带内B(M1)/B(E2)比率的实验值和理论值, 建议上述3个转动带的组态 分别为11/2+[615], 7/2[503]和1/2[521]. 对各转动带的带交叉频率、顺排增益、旋称劈裂等进行了讨论.  相似文献   
119.
In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently been found to have many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to make the defined MCP tractable and meaningful, we must first understand the structure of these epigraphs. So far, only the epigraph of the Frobenius matrix norm, which can be regarded as a second order cone, has been well studied. Here, we take an initial step to study several important properties, including its closed form solution, calm Bouligand-differentiability and strong semismoothness, of the metric projection operator over the epigraph of the $l_1,\,l_\infty $ , spectral or operator, and nuclear matrix norm, respectively. These properties make it possible to apply augmented Lagrangian methods, which have recently received a great deal of interests due to their high efficiency in solving large scale semidefinite programming, to this class of MCP problems. The work done in this paper is far from comprehensive. Rather it is intended as a starting point to call for more insightful research on MCP so that it can serve as a basic tool to solve more challenging convex matrix optimization problems in years to come.  相似文献   
120.
High spin states in ^174Re are investigated via the ^152Sm(^27 AL,5nγ)^174Re reaction and γ - γ coincidence relationships are analysed carefully. A new band is identified due to its spectroscopic connection with the known π1/2^-[541] × ν1/2^-[521] band. This band is proposed to be the ground-state band built on the π1/2^-[541]× ,ν5/2^-[512] configuration in view of the low-lying intrinsic states in the neighbouring odd-mass nuclei. It is of particular interesting that the new band exhibits a phenomenon of low-spin signature inversion, providing a new situation for theoretical investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号