首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593686篇
  免费   6442篇
  国内免费   1918篇
化学   321774篇
晶体学   9350篇
力学   25064篇
综合类   19篇
数学   69643篇
物理学   176196篇
  2020年   4531篇
  2019年   4836篇
  2018年   5502篇
  2017年   5576篇
  2016年   9305篇
  2015年   6430篇
  2014年   9679篇
  2013年   26955篇
  2012年   19714篇
  2011年   24253篇
  2010年   16340篇
  2009年   16303篇
  2008年   22242篇
  2007年   22227篇
  2006年   21312篇
  2005年   19317篇
  2004年   17520篇
  2003年   15800篇
  2002年   15472篇
  2001年   17528篇
  2000年   13516篇
  1999年   10640篇
  1998年   8673篇
  1997年   8376篇
  1996年   8316篇
  1995年   7622篇
  1994年   7292篇
  1993年   6996篇
  1992年   8146篇
  1991年   7917篇
  1990年   7582篇
  1989年   7458篇
  1988年   7672篇
  1987年   7437篇
  1986年   7086篇
  1985年   9767篇
  1984年   9920篇
  1983年   8106篇
  1982年   8577篇
  1981年   8502篇
  1980年   8128篇
  1979年   8600篇
  1978年   8739篇
  1977年   8774篇
  1976年   8556篇
  1975年   8176篇
  1974年   8049篇
  1973年   8239篇
  1972年   5257篇
  1968年   4276篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
A monolayer of covalently anchored, novel, binaphthyl ketone is used as a surface‐confined photochemical radical generator (PRG) for anchoring a variety of polymers to silicon surfaces. The precursor PRG is synthesized by the application of a facile and novel method for the oxidation of sterically hindered benzylic hydrocarbons to carbonyl compounds. Oxidation was carried out with a stoichiometric amount of potassium peroxydisulfate, in the presence of a catalytic amount of copper sulfate in an acetonitrile/water mixture. The PRG synthesized is characterized by 1H NMR, UV, and Fourier transform infrared (FTIR). The covalently attached monolayers are characterized by X‐ray photoelectron spectroscopy, ellipsometry, and water contact angle measurements. The method developed is applicable to the preparation of a monolayer of a variety of polymers on a wide range of substrates carrying surface hydroxyl groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5413–5423, 2004  相似文献   
72.
The effective propagation rate constant (kp; averaged over all the propagating active centers) was characterized for solvent‐free cationic photopolymerizations of phenyl glycidyl ether over the entire range of conversions, including the high conversion regime in which mass transfer limitations become important. The profile for the kp as a function of conversion was found to exhibit a constant plateau value at low to intermediate conversions, followed by a monotonic increase above a threshold value of conversion. To explain this trend, it is proposed that at high conversion the diffusional mobility of the photoinitiator counterion is reduced whereas the mobility of the cationic active center remains high because of reactive diffusion. Therefore, with increasing conversion, the average distance between the active centers and counterions may increase, resulting in an increase in the propagation rate constant. The profiles for the kp values were investigated as a function of the temperature, photoinitiator anion, and photoinitiator concentration. As the photoinitiator concentration was increased, the plateau value of the effective propagation rate constant decreased whereas the threshold conversion increased. All of the experimental trends are consistent with the proposed increase in ion separation at high conversions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4409–4416, 2004  相似文献   
73.
Three‐component photoinitiators comprised of an N‐arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron‐deficient N‐arylphthalimide resulted in a greater acrylate polymerization rate than an electron‐rich N‐arylphthalimide. Triplet energies of each N‐arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N‐arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron–proton transfer from an intermediate radical species to the N‐arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009–4015, 2004  相似文献   
74.
The unsaturated dimer of methyl acrylate [CH2C(CO2CH3)CH2CH2CO2CH3, or MAD] was copolymerized with various monomers to prepare copolymers bearing the ω-unsaturated end group [CH2C(CO2CH3)CH2 ] arising from β fragmentation of the MAD propagating radical. Copolymerizations of MAD with cyclohexyl and n-butyl acrylate resulted in copolymers with ω-unsaturated end groups, and increasing the temperature up to 180 °C resulted in an increase in the rate of β fragmentation of MAD radicals relative to propagation. Only a small amount of unsaturated end groups was introduced by copolymerization with ethyl methacrylate (EMA), and the EMA content in the copolymer increased with temperature. These findings could be explained by the reversible addition of the poly(EMA) radical to MAD. The copolymerization with ethyl α-ethyl acrylate (EEA) did yield a copolymer containing unsaturated end groups with MAD units as part of the main chain, although the steric hindrance of the ethyl group suppressed homopropagation and crosspropagation of EEA, resulting in low polymerization rates. Therefore, the copolymerization of MAD with acrylic esters at high temperatures was noted as a convenient route for obtaining acrylate–MAD copolymers bearing unsaturated end groups at the ω end (macromonomer). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 597–607, 2004  相似文献   
75.
7‐Octenyldimethylphenylsilane was copolymerized with ethylene via Et(Ind)2ZrCl2 methylaluminoxane catalyst system without loss of catalyst activity or decrease in molar mass. The comonomer contents in the polymer samples were at a level of 0.15–1.0 mol % and the reactive phenylsilane groups were posttreated to different alcoxy‐ and halosilane groups, for example, Si? F, Si? Cl, Si? OCH3, and Si? OCH2CH3. The posttreatment reactions had no major effect on the molar masses or on the thermal properties (measured with differential scanning calorimetry) of the copolymers. The reaction pathways were nearly independent of the comonomer contents and the reactions reached 70–100% conversions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1461–1467, 2004  相似文献   
76.
3,3′,5,5′‐Tetrakis(2‐chloro‐2‐propyl)biphenyl (biphenyl tetracumyl chloride, BPTCC) and 1,3‐bis[3,5‐bis(2‐chloro‐2‐propyl)phenoxy]propane (diphenoxypropane tetracumyl chloride, DPPTCC) were synthesized as initiators for quasiliving cationic polymerization of isobutylene (IB). In the synthesis of BPTCC, tetrafunctionality was achieved via the coupling of dimethyl 5‐bromoisophthalate (DMBI) using nickel dibromide bis(triphenylphosphine) and zinc in the presence of a base; in the synthesis of DPPTCC, two equivalents of dimethyl 5‐hydroxyisophthalate were linked via reaction with 1,3‐dibromopropane in the presence of potassium carbonate. Both initiators were used to initiate the polymerization of IB under quasiliving cationic polymerization conditions. PIB initiated from BPTCC revealed a chain end/molecule value (as determined by 1H‐NMR) of 3.85, verifying the nearly exclusive production of 4‐arm polyisobutylene (PIB). GPC analysis revealed a narrow peak representing the target four‐arm PIB, with a slight shoulder at high elution volumes (low molecular weights). GPC analysis of the PIB initiated by DPPTCC revealed multimodal distributions, suggesting the formation of two‐, three‐, and four‐arm star polymers during the polymerization. This behavior was attributed to Friedel–Crafts alkylation of the initiator core after the addition of one IB unit, which was activated by the electron‐donating oxytrimethyleneoxy linking moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5942–5953, 2004  相似文献   
77.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
78.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   
79.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   
80.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号