首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983篇
  免费   60篇
  国内免费   3篇
化学   835篇
晶体学   7篇
力学   12篇
数学   89篇
物理学   103篇
  2023年   9篇
  2022年   13篇
  2021年   21篇
  2020年   22篇
  2019年   13篇
  2018年   16篇
  2017年   10篇
  2016年   40篇
  2015年   34篇
  2014年   40篇
  2013年   40篇
  2012年   74篇
  2011年   88篇
  2010年   41篇
  2009年   48篇
  2008年   82篇
  2007年   76篇
  2006年   92篇
  2005年   78篇
  2004年   52篇
  2003年   32篇
  2002年   32篇
  2001年   16篇
  2000年   12篇
  1999年   4篇
  1998年   11篇
  1997年   10篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1984年   3篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1046条查询结果,搜索用时 0 毫秒
101.
A perchlorate ligand in the rare mu4-1,1,2,2 binding mode is seen for the first time as the sole support for the assembly of two cationic [Cu II 2L]+ fragments (H3L = a dinucleating ligand) in the formation of a magnetically-exchanged tetranuclear cluster.  相似文献   
102.
A convenient preparation of (1R,2S,3R,4S)-3-(neopentyloxy)isoborneol (= (1R,2S,3R,4S)-3-(2,2-dimethyl-propoxy)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol; 1a ), a valuable chiral auxiliary, is described. The synthesis involves six steps starting from the readily available camphorquinone ( 5 ) and gives 1a in 48% overall yield. The key step is the chemoselective hydrolysis of the less hindered 1,3-dioxolane moiety in the camphorquinone di-acetal 4 .  相似文献   
103.
In this article I briefly review Molecular Dynamics Simulations studies relevant to the understanding of the physical origin of the controversial Hydration Force. The focus of the review is in simulations of realistic models of hydrophilic surfaces. The results reviewed here show a molecular perspective on how this repulsive, stabilizing force comes from interfacial water.  相似文献   
104.
Here we study experimentally and by simulations the interaction of monovalent organic and inorganic anions with hydrophobic and hydrophilic colloids. In the case of hydrophobic colloids, our experiments show that charge inversion is induced by chaotropic inorganic monovalent ions but it is not induced by kosmotropic inorganic anions. For organic anions, giant charge inversion is observed at very low electrolyte concentrations. In addition, charge inversion disappears for both organic and inorganic ions when turning to hydrophilic colloids. These results provide an experimental evidence for the hydrophobic effect as the driving force for both ion specific effects and charge inversion. In the case of organic anions, our molecular dynamics (MD) simulations with full atomic detail show explicitly how the large adsorption free energies found for hydrophobic colloids are transformed into large repulsive barriers for hydrophilic colloids. Simulations confirm that solvation free energy (and hence the hydrophobic effect) is responsible for the build up of a Stern layer of adsorbed ions and charge inversion in hydrophobic colloids and it is also the mechanism preventing charge inversion in hydrophilic colloids. Overall, our experimental and simulation results suggest that the interaction of monovalent ions with interfaces is dominated by solvation thermodynamics, that is, the chaotropic/kosmotropic character of ions and the hydrophobic/hydrophilic character of surfaces.  相似文献   
105.
The enantioselective synthesis of the title compound, its conversion into a thiourea-type organocatalyst and the behavior of this organocatalyst in several enantioselective Michael reactions are described.  相似文献   
106.
The reaction of the new ditopic thiol-phosphine compound HS(CH(2))(11)OOCC(6)H(4)PPh(2) (L) with an excess of dodecanethiol-protected gold nanoparticles gave the asymmetric gold complex [CH(3)(CH(2))(11)SAuPPh(2)C(6)H(4)COO(CH(2))(11)SH] (4), but no phosphine-protected gold nanoparticles were formed. However, by blocking the phosphine function in L with metal fragments, we have been able to produce gold nanoparticles functionalised with AuCl- and cluster [Fe(2)(CO)(7)Au] units on the surface by the method of ligand-place exchange reaction.  相似文献   
107.
Magnetic macroporous polymers have been successfully prepared using Pickering high internal phase ratio emulsions (HIPEs) as templates. To stabilize the HIPEs, two types of oleic acid-modified iron oxide nanoparticles (NPs) were used as emulsifiers. The results revealed that partially hydrophobic NPs could stabilize W/O HIPEs with an internal phase above 90%. Depending upon the oleic acid content, the nanoparticles showed either an arrangement at the oil-water interface or a partial dispersion into the oil phase. Such different abilities to migrate to the interface had significant effects on the maximum internal phase fraction achievable and the droplet size distribution of the emulsions. Highly macroporous composite polymers were obtained by polymerization in the external phase of these emulsions. The density, porosity, pore morphology and magnetic properties were characterized as a function of the oleic acid content, concentration of NPs, and internal phase volume of the initial HIPEs. SEM imaging indicated that a close-cell structure was obtained. Furthermore, the composite materials showed superparamagnetic behavior and a relatively high magnetic moment.  相似文献   
108.
A titanium chloromethoxide solution was prepared by reacting TiCl4 with methanol, followed by water addition. The starting solutions were characterized by Fourier Transform Infrared (FTIR) spectroscopy, evidencing that the in situ generated water results in early hydrolysis of the chloroalkoxide. The solution was reacted with molten dodecylamine at room temperature, obtaining a white slurry of amorphous titania nanoparticles. Stable, redispersible TiO2 nanocrystals could be prepared by subsequent solvothermal treatment in oleic acid at 250???C. The use of oleic acid was essential for obtaining crystalline structures, while other surfactants prevented crystallization. The nanocrystals were characterized by X-ray Diffraction and Transmission Electron Microscopy, confirming the formation of anatase TiO2 nanocrystals with a mean size of 3.3?nm. The TiO2 nanocrystals were used for fabricating gas-sensing devices, which were tested towards ethanol vapors. The initial small size of the nanocrystals, and the limited size growth during the high-temperature sensor operation, result in remarkable sensing performances if compared with bulk titania sensors.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号