首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22024篇
  免费   3933篇
  国内免费   4311篇
化学   17262篇
晶体学   364篇
力学   1242篇
综合类   352篇
数学   2621篇
物理学   8427篇
  2024年   43篇
  2023年   453篇
  2022年   781篇
  2021年   937篇
  2020年   1018篇
  2019年   1017篇
  2018年   818篇
  2017年   909篇
  2016年   1181篇
  2015年   1215篇
  2014年   1416篇
  2013年   1845篇
  2012年   1931篇
  2011年   2022篇
  2010年   1571篇
  2009年   1504篇
  2008年   1673篇
  2007年   1423篇
  2006年   1329篇
  2005年   1129篇
  2004年   885篇
  2003年   719篇
  2002年   749篇
  2001年   617篇
  2000年   501篇
  1999年   420篇
  1998年   350篇
  1997年   253篇
  1996年   251篇
  1995年   199篇
  1994年   204篇
  1993年   158篇
  1992年   119篇
  1991年   137篇
  1990年   130篇
  1989年   76篇
  1988年   57篇
  1987年   40篇
  1986年   51篇
  1985年   49篇
  1984年   18篇
  1983年   24篇
  1982年   10篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1975年   2篇
  1959年   2篇
  1957年   4篇
  1936年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
931.
Vanadium pentoxide (V2O5) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5-SnO2/carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5, their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5. The V2O5-SnO2/CNTs composite gave a reversible discharge capacity of 198 mAh·g?1 at the voltage range of 2.05–4.0 V, measured at a current rate of 200 mA·g?1, while that of the commercial V2O5 was only 88 mAh·g?1, demonstrating that the porous V2O5-SnO2/CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   
932.
Direct conversion of fructose-based carbohydrates to 5-ethoxymethylfurfural (EMF) catalyzed by Lewis acid in ethanol was investigated. It was found that BF3·(Et)2O was favorable for 5-hydroxymethylfurfural (HMF) etherification to EMF. BF3·(Et)2O combination with AlCl3·6H2O with the molar ratio of 1 was an effective catalyst system for synthesis of EMF from fructose-based carbohydrates. 55.0%, 45.4% and 23.9% of EMF yields were obtained from fructose, inulin and sucrose under optimized conditions, respectively.  相似文献   
933.
In this study, detection of staphylococcal enterotoxin A (SEA) in multi-matrices using a highly sensitive and specific microplate chemiluminescence enzyme immunoassay (CLEIA) has been established. A pair of monoclonal antibodies (mAbs) was selected from 37 anti-SEA mAbs by pairwise analysis, and the experimental conditions of the CLEIA were optimized. This CLEIA exhibited high performance with a wide dynamic range from 6.4 pg mL−1 to 1600 pg mL−1, and the measured low limit of detection (LOD) was 3.2 pg mL−1. No cross-reactivity was observed when this method was applied to test SEB, SEC1, and SED. It has also been successfully applied for analyzing SEA in a variety of environmental, biological, and clinical matrices, such as sewage, tap water, river water, roast beef, peanut butter, cured ham, 10% nonfat dry milk, milk, orange juice, human urine, and serum. Thus, the highly sensitive and SEA-specific CLEIA should make it attractive for quantifying SEA in public health and diagnosis in near future.  相似文献   
934.
Coil-rod-coil molecules 1–3, consisting of four biphenyls and a p-terphenyl unit linked together with ether bonds as a rod segment and poly(propylene oxide) (PPO) with a degree of polymerization (DP) of 7, 12, 17 as coil segments were synthesized. These molecules contain lateral methyl groups at 2 and 5 positions of the middle benzene ring of p-terphenyl. The self-assembling behavior of molecules 1–3 was investigated by means of DSC, POM and SAXS in the bulk state. Molecule 1 self-organizes into a lamellar structure in the bulk state and transfers into a bicontinuous cubic structure in the liquid crystalline phase. While, molecules 2, 3 containing longer coil chains than 1 self-assemble into the hexagonal perforated lamellar (HPL) structures and the oblique columnar structures in the solid state and liquid crystalline phase, respectively. These results reveal that self-organizing behavior of such molecules is dramatically influenced by the length of the coil chains connected with the rod building block, as well as the lateral methyl groups incorporating in the middle of the rod segment.  相似文献   
935.
936.
The iron nanowires can be fabricated via the process in which sodium borohydride reduces iron salts in external magnetic field. The iron nanowires are found to be covered by passivated layers of iron oxide which prevent the oxidation of iron nanowires. In this process, the boron will include in iron nanowires. The average length and diameter of iron nanowires is around 1.2 micrometers and 60 nanometers, respectively. According to ICP results, the contents of B and Fe are about 1.98 wt% and 87.04 wt%, respectively, in iron nanowires. A wide variety of equipment is used to investigate the morphological, microchemical, and structural characteristics of the newly synthesized iron nanowires ––– e.g., XRD, FE‐SEM, HR‐TEM, VSM and XANES. XANES analysis indicates the boron in iron nanowires exists in the form of B2O3. The saturation magnetization and the coercive force of iron nanowires are 157.93 emu/g and 9.74 Oe, respectively. In‐situ images of synthesized iron nanowires during reduction process in magnetic field are observed by NSRRC transmission X‐ray microscope. Thus, this study develop a novel process to produce iron nanowires with large quantitates and can control its length and diameter by various the concentration of precursors for various applications.  相似文献   
937.
A simple and novel flow‐injection chemiluminescence (FI‐CL) method was established for the determination of 2‐Methoxyestradiol (2‐ME) in pharmaceutical preparations and biological fluids. The method was based on the significant enhancement of the CL from the KMnO4‐Na2SO3 reaction by 2‐ME in acidic medium. Under optimized conditions, the CL intensity was correlated linearly with concentration of 2‐ME in the range of 5.0 × 10?8‐5.0 × 10?6 M (r = 0.9995). The detection limit (3σ) of 2‐ME was 7.5 × 10?9 M and the relative standard deviation was 0.8% at 5.0 × 10?7 M 2‐ME (n = 8). The proposed method was successfully applied for the flow‐injection CL determination of 2‐ME in pharmaceutical preparations and biological fluids with the recoveries from 92.4 to 106.8%. The possible CL reaction mechanism was also discussed briefly.  相似文献   
938.
Chemical investigation on the stem and root of Melicope pteleifolia afforded three new prenylated benzene metabolites as racemic mixtures, named pteleifolins A–C ( 1 – 3 , resp.). Their gross structures were elucidated on the basis of spectroscopic analysis, especially 2D‐NMR experiments. An enantiomer resolution of (±)‐ 1 using chiral HPLC was performed, and the absolute configuration of the enantiomers were determined to be (+)‐(S) 1 and (?)‐(R) 1 by means of circular‐dichroism analysis.  相似文献   
939.
Abstract

Aromatics nitrate with NO2/air catalyzed by novel Brønsted acidic ionic liquids (ILs) without any volatile chlorinated organic solvent under mild conditions. The ILs employed were caprolactam based, [Caprolactam]X (X?=pTSO?, BSO?, BF4 ?, NO3 ?), which are of relatively lower cost and lower toxicity than traditional imidazolium‐based ILs. The nitration reactions were carried out at ?15 to ?0°C first, then at room temperature for a longer time with a little excessive NO2 (ca. 1.4 eqv.) for moderate yield (for toluene). The IL could be reused four times.  相似文献   
940.
A flexible approach to protected trans-5-alkyl-4-hydroxy-2-pyrrolidinones was described. The key step involved the α-amidoalkylation of benzene-sulfone derived from (S)-malic acid, with organozinc reagents generated in situ from Grignard reagents and anhydrous ZnCl2-OEt2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号