首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1740篇
  免费   143篇
  国内免费   257篇
化学   1193篇
晶体学   9篇
力学   142篇
综合类   38篇
数学   334篇
物理学   424篇
  2024年   4篇
  2023年   11篇
  2022年   29篇
  2021年   49篇
  2020年   47篇
  2019年   48篇
  2018年   44篇
  2017年   40篇
  2016年   63篇
  2015年   60篇
  2014年   89篇
  2013年   92篇
  2012年   135篇
  2011年   138篇
  2010年   116篇
  2009年   106篇
  2008年   109篇
  2007年   108篇
  2006年   110篇
  2005年   111篇
  2004年   53篇
  2003年   49篇
  2002年   43篇
  2001年   33篇
  2000年   59篇
  1999年   62篇
  1998年   62篇
  1997年   46篇
  1996年   59篇
  1995年   41篇
  1994年   28篇
  1993年   17篇
  1992年   13篇
  1991年   12篇
  1990年   12篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
排序方式: 共有2140条查询结果,搜索用时 15 毫秒
81.
通过悬浮聚合的方法,用不同表面结构的纳米SiO2对聚甲基丙烯酸甲酯(PMMA)进行原位改性,得到纳米SiO2/聚甲基丙烯酸甲酯复合材料;利用红外光谱仪分析了复合材料的界面化学结构,利用热分析仪测定了其热稳定性,并采用冲击试验机测定了其力学性能.结果表明,不同表面结构的纳米SiO2均参与甲基丙烯酸甲酯的聚合反应,与PMMA基体之间形成化学键;而表面修饰有双键的纳米SiO2更易与甲基丙烯酸甲酯聚合,能更有效地提高PMMA的抗冲击性能.  相似文献   
82.
Herein, we introduce the cyclic 8π-electron (C8π) molecule N,N′-diaryl-dihydrodibenzo[a,c]phenazine ( DPAC ) as a dual-functional donor to establish a series of new donor–linker–acceptor (D–L–A) dyads DLA1 – DLA5 . The excited-state bent-to-planar dynamics of DPAC regulate the energy gap of the donor, while the acceptors A1 – A5 are endowed with different energy gaps and HOMO/LUMO levels. As a result, the rate and efficiency of the excited-state electron transfer vs. energy transfer can be finely harnessed, which is verified via steady-state spectroscopy and time-resolved emission measurements. This comprehensive approach demonstrates, for the first time, the manifold of excited-state properties governed by bifunctional donor-based D–L–A dyads, including bent-to-planar, photoinduced electron transfer (PET) from excited donor to acceptor (oxidative-PET), fluorescence resonance energy transfer (FRET), bent-to-planar followed by electron transfer (PFET), and PET from donor to excited acceptor (reductive-PET).  相似文献   
83.
Spiro conjugation has been proposed to dictate the efficiency of charge transfer, which could directly affect the spin–orbit charge transfer intersystem crossing (SOCT-ISC) process. However, this process has yet to be exemplified. Herein, we prepared three spirobis[anthracene]diones, in which two benzophenone moieties are locked in close proximity and differentially functionalized to fine-tune the charge transfer state. Its feasibility for SOCT-ISC was theoretically predicted, then experimentally evaluated. Through fine-tuning the spiro conjugation coupling and varying the solvent dielectric constants, ISC rate constants were engineered to vary in a dynamic range of three orders of magnitude, from 7.8×108 s−1 to 1.0×1011 s−1, which is the highest ISC rate reported for SOCT-ISC system to our knowledge. Our findings substantiate the key factors for effective SOCT-ISC and offer a new avenue for the rational design of heavy atom free triplet sensitizers.  相似文献   
84.
Wang  Cong  Wu  Yancong  Qu  Yao  Zhao  Kun  Xu  Jianhua  Xia  Xinzhao  Wu  Huilu 《Transition Metal Chemistry》2020,45(8):523-529

Three new metal complexes, namely: [Mn(AIDB)Cl2]·DMF (1), [Zn(AIDB)Br2]·CH3OH (2) and [Co(AIDB)Cl2]·CH3OH (3) having a ligand bis(benzimidazol-2-ylmethyl)allylamine (AIDB), have been synthesized in high yields and characterized by elemental analyses, molar conductivities, IR, UV–Vis spectra and single-crystal X-ray diffraction. The structural analysis revealed that all the three complexes 13 have five-coordinated trigonal bipyramid geometry where the degree of distorting is 1>3>2. In vitro antioxidant activity assay demonstrates that the complexes 1 and 3 display high scavenging activity against hydroxyl (OH·) and superoxide (O2−·) radicals.

  相似文献   
85.
Functional coatings are of considerable interest because of their fundamental implications for interfacial assembly and promise for numerous applications. Universally adherent materials have recently emerged as versatile functional coatings; however, such coatings are generally limited to catechol, (ortho‐diphenol)‐containing molecules, as building blocks. Here, we report a facile, biofriendly enzyme‐mediated strategy for assembling a wide range of molecules (e.g., 14 representative molecules in this study) that do not natively have catechol moieties, including small molecules, peptides, and proteins, on various surfaces, while preserving the molecule's inherent function, such as catalysis (≈80 % retention of enzymatic activity for trypsin). Assembly is achieved by in situ conversion of monophenols into catechols via tyrosinase, where films form on surfaces via covalent and coordination cross‐linking. The resulting coatings are robust, functional (e.g., in protective coatings, biological imaging, and enzymatic catalysis), and versatile for diverse secondary surface‐confined reactions (e.g., biomineralization, metal ion chelation, and N‐hydroxysuccinimide conjugation).  相似文献   
86.
Kinetic isotope effects (KIEs) occurring in mass spectrometry (MS) can provide in‐depth insights into the fragmentation behaviors of compounds of interest in MS. Yet, the fundamentals of KIEs in collision‐induced dissociation (CID) in tandem mass spectrometry (MS/MS) are unclear, and information about chlorine KIEs (Cl‐KIEs) of organochlorines in MS is particularly scarce. This study investigated the Cl‐KIEs of dichloromethane, trichloroethylene, and tetrachloroethylene during CID using gas chromatography‐electron ionization triple‐quadrupole MS/MS. Cl‐KIEs were evaluated with MS signal intensities. All the organochlorines presented large inverse Cl‐KIEs (<1, the departures of Cl‐KIEs from 1 denote the magnitudes of Cl‐KIEs), showing the largest magnitudes of 0.797, 0.910, and 0.892 at the highest collision energy (60 eV) for dichloromethane, trichloroethylene, and tetrachloroethylene, respectively. For dichloromethane, both intra‐ion and inter‐ion Cl‐KIEs were studied, within the ranges of 0.820–1.020 and 0.797–1.016, respectively, showing both normal and inverse Cl‐KIEs depending on collision energies. The observed Cl‐KIEs generally declined from large normal to extremely large inverse values with increasing collision energies from 0 to 60 eV but were inferred to be independent of MS signal intensities. The Cl‐KIEs are dominated by critical energies at low internal energies of precursor ions, resulting in normal Cl‐KIEs; while at high internal energies, the Cl‐KIEs are controlled by rotational barriers (or looseness/tightness of transition states), which lead to isotope‐competitive reactions in dechlorination and thereby inverse Cl‐KIEs. It is concluded that the Cl‐KIEs may depend on critical energies, bond strengths, available internal energies, and transition state looseness/tightness. The findings of this study yield new insights into the fundamentals of Cl‐KIEs of organochlorines during CID and may be conducive to elucidating the underlying mechanisms of KIEs in collision‐induced and photo‐induced reactions in the actual world.  相似文献   
87.
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.  相似文献   
88.
89.
Dual-specific tyrosine phosphorylation regulated kinase 1 (DYRK1A) has been regarded as a potential therapeutic target of neurodegenerative diseases, and considerable progress has been made in the discovery of DYRK1A inhibitors. Identification of pharmacophoric fragments provides valuable information for structure- and fragment-based design of potent and selective DYRK1A inhibitors. In this study, seven machine learning methods along with five molecular fingerprints were employed to develop qualitative classification models of DYRK1A inhibitors, which were evaluated by cross-validation, test set, and external validation set with four performance indicators of predictive classification accuracy (CA), the area under receiver operating characteristic (AUC), Matthews correlation coefficient (MCC), and balanced accuracy (BA). The PubChem fingerprint-support vector machine model (CA = 0.909, AUC = 0.933, MCC = 0.717, BA = 0.855) and PubChem fingerprint along with the artificial neural model (CA = 0.862, AUC = 0.911, MCC = 0.705, BA = 0.870) were considered as the optimal modes for training set and test set, respectively. A hybrid data balancing method SMOTETL, a combination of synthetic minority over-sampling technique (SMOTE) and Tomek link (TL) algorithms, was applied to explore the impact of balanced learning on the performance of models. Based on the frequency analysis and information gain, pharmacophoric fragments related to DYRK1A inhibition were also identified. All the results will provide theoretical supports and clues for the screening and design of novel DYRK1A inhibitors.  相似文献   
90.
徐铭  吉建华 《光学学报》2007,27(5):81-786
差分相移键控(DPSK)调制方式和色散管理孤子传输方式的结合能抵制噪声和非线性损伤,在高速(40 Gbit/s以上)多信道系统中具有突出的优点。采用变分法分析了多波长信道的放大自发辐射(ASE)噪声、信号间的非线性串扰(ISI)等多种扰动因素引起差分相移键控色散管理孤子系统的均方根相位抖动,给出了扰动的作用区域以及各扰动的大小。研究发现,放大自发辐射引起的抖动与传输距离成三次方的关系,而交叉相位调制(XPM)引起的抖动与距离近似成线性关系。通过优化选择色散管理图强度范围1.5~3.5,各种扰动得到了抑制,而以放大自发辐射扰动抑制为最大,此时要远低于交叉相位调制引起的抖动,然后分别是交叉相位调制-放大自发辐射扰动和交叉相位调制,从而波分复用系统主要来自于增加信道数这一客观限制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号