首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
化学   101篇
力学   3篇
数学   6篇
物理学   36篇
  2023年   4篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   11篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   29篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
31.
TiIV-containing metal–organic frameworks are known to accumulate electrons in their conduction bands, accompanied by protons, when irradiated in the presence of alcohols. The archetypal system, MIL-125, was recently shown to reach a limit of 2e per Ti8 octomeric node. However, the origin of this limit and the broader applicability of this unique chemistry relies not only on the presence of TiIV, but also access to inorganic inner-sphere Lewis basic anions in the MOF nodes. Here, we study the loading of protons and electrons in MIL-125, and assess the thermodynamic limit of doping these materials. We find that the limit is determined by the reduction potential of protons: in high charging regimes the MOF exceeds the H+/H2 potential. Generally, we offer the design principle that inorganic anions in MOF nodes can host adatomic protons, which may stabilize meta-stable low valent transition metals. This approach highlights the unique chemistry afforded by MOFs built from inorganic clusters, and provides one avenue to developing novel catalytic scaffolds for hydrogen evolution and transfer hydrogenation.

Photo-promoted doping of MIL-125 is limited by the potential of MOF-bound protons exceeding the hydrogen evolution reaction.  相似文献   
32.
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for study- ing the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and tough- ness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their single- component counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Single- component and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer con- centration was demonstrated for all systems. Alginate hydro- gels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhib- ited a combination of the mechanical properties of the con- stituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment.  相似文献   
33.
Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.  相似文献   
34.
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of −6.2 mA cm−2 at −2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2-catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.  相似文献   
35.
36.
Summary A method based on micellar electrokinetic chromatography has been developed for the simultaneous separation of six anthocyanins (malvidin-3,5-diglucoside, malvidin-3-glucoside, malvidin-3-galactoside, pelargonidin-3-glucoside, cyanidin-3,5-diglucoside, cyanidin-3-galactoside). Optimum selectivity was achieved in the buffer 30 mM phosphate + 400 mM borate-TRIS, pH=7.0 supported with 50 mM sodium dodecylsulphate. High content of borate was essential mainly for the separation of diastereomeric pair malvidin-3-glucoside-malvidin-3-galactoside. The calibration dependencies exhibit good linearity in the ranges of concentration 10–100 g mL–1 for diglycosylated and 25–100 g mL–1 for monoglycosylated derivatives (R2 = 0.9711–0.9989). The optimized method was applied to a sample of wine grape skin extract. Malvidin-3-glucoside was identified as main anthocyanin colorant in this sample.  相似文献   
37.
38.
Nowadays, the use of ventilation systems is very common. In museums and exhibition rooms, they are used to guarantee the optimal temperature and humidity conditions for valuable and irreplaceable objects. Ventilation systems are increasingly used even in residential and office buildings. In Austria and other similar climates, winter outdoor air is very dry. Because of the constant air exchange using a ventilation system, the relative humidity of indoor air is often lower than the comfort limit, so that air humidification is necessary. In the same rooms, air must be dehumidified during the summer months. Humidification and dehumidification should be minimized as they are processes that consume a large amount of energy. The problem is that until now, it has been unclear how much humidification or dehumidification is necessary and could not be calculated easily. In this investigation, a simplified method for determining the humidification and dehumidification demands taking into account the effective moisture capacity of the room was developed. The developed model is used for the calculation of the energy balance and will be integrated into the program for energy certification in Austria.  相似文献   
39.
Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.  相似文献   
40.
The existence of a family of very thin carbon needlelike nanostructures is predicted: the geometry and stability of several carbon nanoneedles (CNNs) formed by C4 and C6 units have been studied by quantum chemistry computational modeling methods. The structures of carbon nanoneedles are tighter than even the smallest single wall nanotubes (SWNTs) based on (4, 0) naphthacene. The electronic properties, energetic stability of geometrical structures with various terminal units are investigated. The relatively large band gaps, the strong bonding, and additional orbital interactions within the C4 rings and between the C4 layers make the H4(C4)(n)H4 type molecules nonmetallic. We have found indications that if the CNN (3, 0) structures are very long (in the limit of infinite-length), then they are likely to have semiconducting properties and could possibly be used as actual semiconductors. The studied families of CNNs can be considered as carbon nanostructures with unique structural and chemical properties and with possible potential for unusual electronic properties, with likely practical applications as nanomaterials and nanostructure devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号