首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   6篇
化学   151篇
晶体学   4篇
力学   1篇
数学   7篇
物理学   15篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   7篇
  2011年   13篇
  2010年   6篇
  2008年   11篇
  2007年   13篇
  2006年   13篇
  2005年   13篇
  2004年   10篇
  2003年   13篇
  2002年   5篇
  2000年   5篇
  1999年   1篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1970年   1篇
  1968年   2篇
  1957年   1篇
  1939年   2篇
  1926年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
11.
A rabbit antibody immunoaffinity (IA) column procedure was evaluated as a cleanup method for the determination of atrazine in soil, sediment, and food. Four IA columns were prepared by immobilizing a polyclonal rabbit anti-atrazine antibody solution to HiTrap Sepharose columns. Atrazine was bound to the IA columns when the loading solvents were either 100% water, 2% acetonitrile in water, or 10% methanol in phosphate buffered saline (PBS). Quantitative removal of atrazine from the IA columns was achieved with elution solvents of either 70% ethanol in water, 70% methanol in water, or 100% methanol. One control column was prepared using nonspecific rabbit IgG antibody. This control column did not retain any applied atrazine indicating atrazine did not bind indiscriminately to protein or the Sepharose support. The four IA columns showed reproducible coupling efficiency for the immobilization of the atrazine antibody and consistent binding and releasing of atrazine. The coupling efficiency (4.25 mg of antibody in 1 mL of resin bed) for the four IA columns ranged from 93 to 97% with an average of 96 ± 2% (2.1%). Recoveries of the 500, 50, and 5 ng mL−1 atrazine standard solutions from the four IA columns were 107 ± 7% (6.5%), 122 ± 14% (12%), and 114 ± 9% (8.0%) respectively, based on enzyme-linked immunosorbent assay (ELISA) data. The maximum loading was approximately 700 ng of atrazine for each IA column (∼0.16 μg of atrazine per mg of antibody). The IA columns could withstand 100% methanol as the elution solvent and could be reused more than 50 times with no change in performance. The IA columns were challenged with soil, sediment, and duplicate-diet food samples and effectively removed interferences from these various matrices for subsequent gas chromatography/mass spectrometry (GC/MS) or ELISA analysis. The log-transformed ELISA and GC/MS data were significantly correlated for soil, sediment and food samples although the ELISA values were slightly higher than those obtained by GC/MS. The IA column cleanup procedure coupled with ELISA analysis could be used as an alternative effective analytical method for the determination of atrazine in complex sample media such as soil, sediment, and food samples.  相似文献   
12.
13.
Two new ligands consisting of bis(oxime) amine units tethered by a bridge have been synthesized. Their nickel chloride and nickel nitrate complexes have also been synthesized and characterized by X-ray crystallography, FTIR, mass spectrometry, and elemental analysis. One of these ligands, L1 (N,N,N',N'-tetra(1-propan-2-onyl oxime)-diamino-m-xylene), is always dinucleating, while the other ligand, L2 (N,N,N',N'-tetra(1-propan-2-onyl-oxime)-1,3-diaminopropane), shows an unusual anion dependence on the nuclearity. When nickel chloride is used, the ligand acts in a dinucleating manner and coordinates two nickels; however, when nickel nitrate is used, the ligand acts in a monodentate fashion and coordinates only one nickel. Once the mononuclear complex is formed, it is not possible to add a second nickel if Ni(NO(3))(2) is used as the nickel source; it is possible, however, to add a second nickel if NiCl(2) is used as the nickel source. The dinuclear complex can be converted to the mononuclear one by either using silver nitrate to exchange the chloride anions for nitrates or by dissolving the complex in water. Ni(2)(L1)Cl(4)(DMF)(2).DMF: orthorhombic, P2(1)2(1)2(1), a = 12.2524(11) A, b = 16.6145(15) A, c = 20.1234(19) A, V = 4096.5(6) A(3), Z = 4. [Ni(2)(L2)Cl(4)(DMF)](2).2DMF: triclinic, P-1, a = 12.5347(5) A, b = 12.5403(5) A, c = 14.3504(6) A, alpha = 67.348(1) degrees , beta = 69.705(1) degrees , gamma = 81.549(1) degrees , V = 1952.25(14) A(3), Z = 1. Ni(L2).(NO(3))(2): monoclinic, P2(1)/n, a = 9.6738(3) A, b = 30.2229(9) A, c = 15.8238(5) A, beta = 97.995(1) degrees , V = 4581.4(2) A(3), Z = 8.  相似文献   
14.
The monodentate dithioformato complexes, fac-(CO)3(dppe)MnSC(S)H (1), fac- (CO)3(dppe)ReSC(S)H (2), fac-(CO)3(dppp)ReSC(S)H (3), and fac-(CO)3 (dppb)ReSC(S)H (4), where dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized from the treatment of the corresponding hydrides, fac-(CO)3 (P-P)MSC(S)H with CS2. Compounds 1–4 crystallize in the monoclinic crystal system: for 1, space group = P21/c, a = 15.3139(3) Å, b = 9.7297(4) Å, c = 19.0991(6) Å, = 105.928(1), V = 2736.5 Å3, Z = 4; for 2, space group = P21/c, a = 15.6395(8) Å, b = 9.8182(5) Å, c = 19.4153(11) Å, = 106.741(1), V = 2854.9(3) Å3, Z = 4; for 3, space group = P21/n, a = 11.3570(10) Å, b = 19.465(2) Å, c = 15.5702(14) Å, = 104.776(2), V = 3328.3(5) Å3, Z = 4; and for 4, space group = C2/c, a = 32.078(2) Å, b = 10.4741(6) Å, c = 19.0608(9) Å, = 94.315(2), V = 6386.1(6) Å3, Z = 8.  相似文献   
15.
Abstract. –This review discusses recent spectroscopic studies aimed at discovering the structure, orientation, and function of chlorophyll in vivo. In plant membranes there appear to be at least two distinct types of chlorophyll a. The greater part, over 99%, is antenna chlorophyll which absorbs and transfers radiant energy to a few specialized chlorophyll molecules in a reaction center where the actual charge separation occurs. A dimer-oligomer model for antenna chlorophyll has been proposed on the basis of comparative studies of the absorption spectra of chlorophyll in various dry solvents and in vivo. Unfortunately a similarity between essentially structureless broad spectra is very weak evidence for their original identity. Also the requirement of an anhydrous environment for most of the chlorophyll in biological material is an unlikely postulate. A cross-linked, linear polymer model of chlorophyll in vivo has also been proposed. Recent Resonance Raman spectroscopic results appear to rule out, in large part, either polymer model and once again suggest that it is the various attachments of chlorophyll to proteins which determine its function as antenna pigment in vivo. Circular dichroism measurements of chlorophyll in various plant materials have also led to the conclusion that antenna chlorophyll has strong interaction with protein. However, some doubt still exists as to the interpretation of these CD results. New studies of fluorescence, polarized fluorescence and Resonance Raman spectroscopy of various plant species corroborate the original proposition, based upon deconvolution of absorption spectra, that antenna chlorophyll occurs in vivo in at least five discrete pools, and that each pool is likely to be located in the same environment in different plants. A new model-systems approach to simulating chlorophyll in vivo has come through the use of lipid bilayers and liposomes. Charge transfer has been observed between chlorophyll in a lipid phase and phycobiliproteins or cytochrome c. The most promising, newly synthesized model for the reaction center, P700, is a covalently bound dimeric derivative of pyrochlorophyllide a. Its properties are similar to P700 in several respects except for reversible photooxidation which has not yet been observed. By detergent treatments chlorophyll-protein complexes having about 20–40 chlorophyll a molecules for every P700 have been isolated from different plants, and their spectroscopic properties are under investigation in several laboratories. The several hypotheses to explain the shape of the oxidized minus reduced absorption difference spectrum of P700 have not yet been reconciled. The nature of the photosystem II reaction center chlorophyll, P680, is also a subject of active investigation. Its absorption difference spectrum appears to have two kinetic components.  相似文献   
16.
Tris­[2‐(benzoyl­amino)­ethyl]­amine [alternatively, N,N′,N′′‐(nitrilo­tri­ethyl)­tri­benz­amide], C27H30N4O3, adopts a folded structure, forming a symmetrical cavity with an average depth of 7.3 Å and width ranging from 4.1–4.4 Å. The folded structure is a result of one intramolecular N—H?O hydrogen bond. A linear chain motif along the c axis best describes the extended intermolecular N—H?O hydrogen bonding.  相似文献   
17.
Self-assembly of alpha-lactalbumin after partial hydrolysis by a protease from Bacillus licheniformis can result in nanotubular structures, which show many similarities to microtubules. Calcium plays a crucial role in this process. The objective of this investigation was to study the role of calcium in more detail. The kinetics of the hydrolysis step and the self-assembly step were monitored by respectively liquid chromatography-mass spectrometry and dynamic light scattering. The microstructure of the gels finally formed was investigated by transmission electron microscopy. This investigation demonstrates that calcium accelerated the kinetics of the self-assembly, but it had no effect on the hydrolysis kinetics. As a result of the accelerated self-assembly kinetics at a high calcium concentration, the time of gelation decreased as well. A minimum concentration of calcium needed to obtain the tubular alpha-lactalbumin structures was determined. Below R = 1.5 (mole calcium/mole alpha-lactalbumin), turbid gels with randomlike structure were obtained. Between R = 1.5 and R = 6, translucent gels with a fine stranded network of tubules were formed, while higher calcium concentrations had a negative effect on the tubule formation, resulting in amorphous structures. The optimum calcium concentration for alpha-lactalbumin nanotube formation seemed to be around R = 3.  相似文献   
18.
A new siderophore containing a 4,5-dihydroimidazole moiety was isolated from Pseudoalteromonas piscicida S2040 together with myxochelins A and B, alteramide A and its cycloaddition product, and bromo- and dibromoalterochromides. The structure of pseudochelin A was established by spectroscopic techniques including 2D NMR and MS/MS fragmentation data. In bioassays selected fractions of the crude extract of S2040 inhibited the opportunistic pathogen Pseudomonas aeruginosa. Pseudochelin A displayed siderophore activity in the chrome azurol S assay at concentrations higher than 50 μM, and showed weak activity against the fungus Aspergillus fumigatus, but did not display antibacterial, anti-inflammatory or anticonvulsant activity.  相似文献   
19.
The spatially controlled positioning of functional materials by self-assembly is one of the fundamental visions of nanotechnology. Major steps towards this goal have been achieved using DNA as a programmable building block. This tutorial review will focus on one of the most promising methods: DNA origami. The basic design principles, organization of a variety of functional materials and recent implementation of DNA robotics are discussed together with future challenges and opportunities.  相似文献   
20.
Designing and constructing multichromophoric, artificial light-harvesting antennas with controlled interchromophore distances, orientations, and defined donor-acceptor ratios to facilitate efficient unidirectional energy transfer is extremely challenging. Here, we demonstrate the assembly of a series of structurally well-defined artificial light-harvesting triads based on the principles of structural DNA nanotechnology. DNA nanotechnology offers addressable scaffolds for the organization of various functional molecules with nanometer scale spatial resolution. The triads are organized by a self-assembled seven-helix DNA bundle (7HB) into cyclic arrays of three distinct chromophores, reminiscent of natural photosynthetic systems. The scaffold accommodates a primary donor array (Py), secondary donor array (Cy3) and an acceptor (AF) with defined interchromophore distances. Steady-state fluorescence analyses of the triads revealed an efficient, stepwise funneling of the excitation energy from the primary donor array to the acceptor core through the intermediate donor. The efficiency of excitation energy transfer and the light-harvesting ability (antenna effect) of the triads was greatly affected by the relative ratio of the primary to the intermediate donors, as well as on the interchromophore distance. Time-resolved fluorescence analyses by time-correlated single-photon counting (TCSPC) and streak camera techniques further confirmed the cascading energy transfer processes on the picosecond time scale. Our results clearly show that DNA nanoscaffolds are promising templates for the design of artificial photonic antennas with structural characteristics that are ideal for the efficient harvesting and transport of energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号