首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6611篇
  免费   362篇
  国内免费   31篇
化学   4913篇
晶体学   30篇
力学   160篇
综合类   1篇
数学   1025篇
物理学   875篇
  2022年   38篇
  2021年   58篇
  2020年   82篇
  2019年   140篇
  2018年   66篇
  2017年   65篇
  2016年   237篇
  2015年   250篇
  2014年   252篇
  2013年   401篇
  2012年   312篇
  2011年   329篇
  2010年   290篇
  2009年   296篇
  2008年   335篇
  2007年   278篇
  2006年   268篇
  2005年   241篇
  2004年   273篇
  2003年   221篇
  2002年   280篇
  2001年   151篇
  2000年   144篇
  1999年   71篇
  1998年   65篇
  1997年   78篇
  1996年   88篇
  1995年   64篇
  1994年   73篇
  1993年   73篇
  1992年   67篇
  1991年   42篇
  1990年   47篇
  1989年   47篇
  1988年   42篇
  1987年   42篇
  1986年   39篇
  1985年   47篇
  1984年   65篇
  1983年   56篇
  1982年   71篇
  1981年   72篇
  1980年   74篇
  1979年   82篇
  1978年   78篇
  1977年   83篇
  1976年   76篇
  1975年   74篇
  1974年   75篇
  1973年   53篇
排序方式: 共有7004条查询结果,搜索用时 15 毫秒
81.
 Poly(N-isopropylacrylamide) (PNIPAM) precipitates out of water around 32 °C. This critical temperature is raised when hydrophilic acrylamide sequences are present on the polymer chain. We have used neutron scattering to study the structural properties of a statistical copolymer containing acrylamide and N-isopropylacrylamide segments at different temperatures and its interactions with an anionic surfactant, sodium dodecyl sulfate (SDS). At low temperatures, the copolymer behaves as a swollen polymer coil. With an increase in temperature, intermolecular attractions are observed, and close to the critical temperature of the copolymer, microphase separation is observed. Here, the structure consists of dense nodules of hydrophobic sequences stabilized by hydrophilic sequences. In the presence of a small amount of SDS, additional colloidal stability is observed: the nodule size is decreased. At high SDS concentration, the copolymer is completely solubilized at all temperatures studied and the structure of the polymer–surfactant complex resembles the “necklace” structure obtained for the homopolymer PNIPAM–SDS system. Received: 11 November 1999 Accepted: 15 December 1999  相似文献   
82.
La structure destrans fe´ruloyl-6′ ettrans sinapoyl-6′ lyaloside, isole´s des feuilles dePauridiantha Lyalii, ae´te´de´termine´e par de´gradation chimique et par spectroscopie (Masse, RMN1H et13C). Ces compose´s font partie d'un groupe structural caracte´rise´par un enchai?nement alcaloide-monoterpe`ne-ose-acide (C6-C3), groupe dont un seul repre´sentant semble avoire´te´isole´jusqu'a`pre´sent. Leur fonction dans le ve´ge´tal est discute´e.  相似文献   
83.
The crystal structures of four anion cryptates [X? ? BT -6H+] formed by the protonated macrobicyclic receptor BT -6H+ with F?, Cl?, Br? and N have been determined. They provide a homogeneous series of anion coordination patterns with the same ligand. The small F?-ion is tetracoordinated, while Cl? and Br? are bound in an octahedron of H-bonds. The non-complementarity between these spherical anions and the ellipsoïdal cavity of BT -6H+ is reflected in ligand distortions. Structural complementarity is achieved for the linear triatomic substrate N, which is bound by two pyramidal arrays of three H-bonds, each interacting with a terminal N-atom of N. The formation constants of the complexes formed by BT -6H+ with a variety of anions (halides, N, NO, carboxylates, SO, HPO, AMP2?, ADP3?, ATP4?, P2O) have been determined. Very strong complexations are found, as well as marked electrostatic and structural effects on stability and selectivity; in particular the binding of F?, Cl?, Br?, and N may be analyzed in terms of the crystal structure data. The cryptand BT -6H+ is a molecular receptor containing an ellipsoïdal recognition site for linear triatomic substrates of size compatible with the size of the molecular cacity. Further developments of various aspects of anion coordination chemistry are considered.  相似文献   
84.
85.
86.
87.
The synthesis of (1S,4S,7S)- and (1R,4R,7S)-2-(4-tolylsulfonyl>5-phenylmethyl-7-rnethyl-2,5-diazabicyclo-[2.2.1]heptanes ( 20 ) and ( 22 ) from trans 4-hydroxy-L-proline is described.  相似文献   
88.
The liquid-solid phase diagram of the binary system BaF2? ScF3 is established by D.T.A. and radiocrystallography. Three fluorides are disclosed: Ba3Sc2F12, Ba5Sc3F19 and a cubic high temperature phase Ba1?xScxF2+x (x = 0.17), the structure of which derives from that of BaF2. A solid solution between BaF2 and ScF3 is also evidenced at high temperature. The ternary system BaF2? CuF2? ScF3 is investigated by radiocrystallography and an isothermal section at 670°C is given. It shows the existence of four phases: a complex quaternary fluoride Ba10Cu12ScF47, two “polytypic” phases the structure of which derives from that of BaCuF4 and a tetragonal solid solution Ba5Sc3?xCuxF19?x with 0 ≤ x ≤ 1.  相似文献   
89.
Phase diagrams, volumes and heat capacities of aqueous mixtures of 2,6-dimethylpyridine (2,6-L) and 2-isobutoxyethanol (iBE) and activities of 2,6-L in aqueous mixtures were measured in the monophasic region near the lower critical solution temperature (LCST). With 2,6-L some measurement were also made just above the LCST. From the temperature dependence of these data, partial molar relative enthalpies (2,6-L), expansibilities and the temperature derivative of heat capacities were calculated and show that iBE undergoes a microphase transition at low concentration which is not related to the phase separation. On the other hand, the properties of 2,6-L in the water-rich region at temperatures well below the LCST indicates that this solute has only a slight tendency to associate. The heat capacities of 2,6-L show an important increase near the LCST. Such changes are not observed for iBE and other alkoxyethanols and amines since these systems already exist in the form of microphases; the partial molar properties of iBE near the LCST are nearly equal to the molar values of the pure liquid, and the changes in thermodynamic properties corresponding to the macroscopic phase transition, are therefore too small to be measured by the present techniques.  相似文献   
90.
In seeded emulsion polymerization, during the second stage, new interfaces appear and the surface area changes. A thermodynamic equilibrium approach is presented which predicts particle morphology of a whole range of non-spherical particles upon polymer conversion. Simulation takes into account swelling ratio, molar volumes and interfacial tension. As the particle geometry is complex, a new mathematical procedure is detailed.The computed data are useful to discuss either the stability or the instability of the particles morphology. These results must be compared with actual experimental structures.Abreviations and symbols G Gibbs' free energy - reduced Gibbs' free energy - i interfacial tension - 12 interfacial tension between polymer 1 and polymer 2 - 1w interfacial tension between polymer 1 and water - 2w interfacial tension between polymer 2 and water - r 1 polymer 1 swollen by monomer 2 sphere radius - r 2 polymer 2 swollen by monomer 2 sphere radius - r i interfacial radius - h 1 sphere 1 distance to minimal section - h 2 sphere 2 distance to minimal section - h i interfacial sphere distance to minimal section - sign ofh i, positive when the interface sphere is on the side of the sphere 2, negative when the interface sphere is on the side of the sphere 1 - A 12 surface between polymer 1 and polymer 2 - A 1w surface between polymer 1 and water - A 1w 0 surface between polymer 1 and water before polymerization - A 2w surface between polymer 2 and water - v 1 volume of the polymer 1 swollen by monomer 2 - v i volume of the polymer 1 swollen by monomer 2 before polymerization - v 2 volume of the polymer 2 swollen by monomer 2 - V p1 polymer 1 molar volume - V p2 polymer 2 molar volume - V m2 monomer 2 molar volume - n p2 polymer 2 number of mole - n p1 polymer 1 number of moles - n m21 monomer 2 number of mole in the swollen polymer 1 - n m22 monomer 2 number of mole in the swollen polymer 2 - n m2 monomer 2 total number of mole - n m2 monomer 2 number of mole before polymerization - TGn 1 polymer 1 swelling rate - TGn 2 polymer 2 swelling rate - TGn i maximum number of mole of monomer 2 in polymeri by mole of polymeri - x polymer 2 conversion rate - K, p, q mathematical variables - D, r, a mathematical variables  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号