首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84142篇
  免费   612篇
  国内免费   400篇
化学   28741篇
晶体学   816篇
力学   6868篇
综合类   1篇
数学   32887篇
物理学   15841篇
  2021年   57篇
  2020年   81篇
  2019年   141篇
  2018年   10483篇
  2017年   10312篇
  2016年   6277篇
  2015年   1082篇
  2014年   530篇
  2013年   694篇
  2012年   4055篇
  2011年   10777篇
  2010年   5884篇
  2009年   6309篇
  2008年   6886篇
  2007年   8983篇
  2006年   463篇
  2005年   1521篇
  2004年   1777篇
  2003年   2168篇
  2002年   1272篇
  2001年   391篇
  2000年   427篇
  1999年   220篇
  1998年   253篇
  1997年   220篇
  1996年   282篇
  1995年   177篇
  1994年   147篇
  1993年   164篇
  1992年   119篇
  1991年   104篇
  1990年   96篇
  1989年   105篇
  1988年   100篇
  1987年   98篇
  1986年   96篇
  1985年   93篇
  1984年   107篇
  1983年   92篇
  1982年   112篇
  1981年   110篇
  1980年   120篇
  1979年   126篇
  1978年   112篇
  1977年   101篇
  1976年   92篇
  1975年   90篇
  1974年   86篇
  1973年   78篇
  1914年   46篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Cellulose nanofibers (CNFs) were isolated from four kinds of plant cellulose fibers by a chemical-ultrasonic treatment. The chemical composition, morphology, crystalline behavior, and thermal properties of the nanofibers and their intermediate products were characterized and compared. The CNFs extracted from wood, bamboo, and wheat straw fibers had uniform diameters of 1040 nm, whereas the flax fibers were not uniformly nanofibrillated because of their initially high cellulose content. The chemical composition of each kind of nanofibers was mainly cellulose because hemicelluloses and lignin were significantly removed during chemical process. The crystallinity of the nanofibers increased as the chemical treatments were applied. The degradation temperature of each kind of nanofiber reached beyond 330 °C. Based on the properties of the CNFs, we expect that they will be suitable for use in green nanocomposites, filtration media and optically transparent films.  相似文献   
992.
The hydrogen bond arrangement in a complex of cellulose with ammonia has been studied using neutron crystallography in combination with molecular dynamics simulations. The O6 atom of the hydroxymethyl group is donor in a highly occupied hydrogen bond to an ammonia molecule. This rotating ammonia molecule is donor in partially occupied and transient hydrogen bonds to the O2, O3 and O6 atoms of the hydroxyl groups of other chains. The hydrogen atom bound to the O3 atom is disordered but it is almost always involved in some type of hydrogen bonding. It is donated in a hydrogen bond most of the time to the O5 atom on the same chain. However, it also rotates away from this O5 atom to be donated to an ammonia molecule part of the time. On the other hand the hydrogen atom bound to the O2 atom is free from hydrogen bonding most of the time. It is donated in a hydrogen bond to the O6 atom on a neighboring chain only with a relatively small probability. These results provide new insights into how hydrogen bonds are rearranged during the conversion of cellulose I to cellulose IIII by ammonia treatment.  相似文献   
993.
Nanocomposite cellulose films with obvious magnetic anisotropy have been prepared by in situ synthesis of plate-like Fe2O3 nanoparticles in the cellulose matrix. The influence of the concentrations of FeCl2 and FeCl3 solutions on the morphology and particle size of the synthesized Fe2O3 nanoparticles as well as on the properties of the composite films has been investigated. The Fe2O3 nanoparticles synthesized in the cellulose matrix was γ-Fe2O3, and its morphology was plate-like with size about 48 nm and thickness about 9 nm, which was totally different from those reported works. The concentration of FeCl2 and FeCl3 solution has little influence on the particle size and morphology of the Fe2O3 nanoparticles, while the content of Fe2O3 nanoparticles increased with the increase of the concentration of the precursor solution, indicating that porous structured cellulose matrix could modulate the growth of inorganic nanoparticles. The unique morphology of the Fe2O3 nanoparticles endowed the composite films with obvious magnetic anisotropy, which would expand the applications of the cellulose based nanomaterials.  相似文献   
994.
In a previous work (Siqueira et al. 2010b) the preparation of cellulosic nanoparticles from sisal fibers using different processing routes, viz. a combination of mechanical shearing, acid and enzymatic hydrolysis was reported. It was shown that the pre-enzymatic hydrolysis treatment of bleached sisal pulp helps the preparation of well individualized rod-like nanocrystals. An amorphous polymer (natural rubber—NR) was chosen as model matrix to investigate the effect of these nanoparticles on the thermo-mechanical properties of nanocomposites. Both tensile tests and dynamic mechanical analyses showed improved stiffness for all nanocomposites. The enzymatic treatment allowed production of a huge range of cellulosic nanoparticles which provided completely different mechanical properties to NR matrix.  相似文献   
995.
In our group, we work on the surface modification of cellulose nanocrystals. During this work, we have encountered reproducibility issues when the same reactions were performed on nanocrystals from different hydrolysis batches, indicating a variable surface composition. Given the inherent purity of the nanoparticles themselves, this issue was believed to be due to the presence of adsorbed species at the surface of the nanocrystals blocking reactive sites. To investigate this in detail, nanocrystals from several batches were extracted with different solvents. The effect of these extractions on the surface composition of the nanowhiskers was investigated, followed by its effect on the Surface-Initiated Ring-Opening Polymerization (SI-ROP) of ε-caprolactone. The extracted impurities were analysed by NMR (1H and 13C) and MS, showing a variety of adsorbed species which can be removed by solvent extraction. A Soxhlet extraction using ethanol before the reaction was shown to be the most effective in removing adsorbed low molecular weight organic compounds produced during the hydrolysis, resulting in improved reproducibility between reactions using nanocrystals from different batches, as confirmed by FTIR, elemental analysis and XPS. Extraction with ethanol should thus be performed before all reaction as these adsorbed species can be expected to interfere with all surface modification reactions.  相似文献   
996.
Adsorption isotherms of single and double chain cationic surfactants with different chain length (cetyltrimethyl-, didodecyl- and dihexadecyl ammonium bromide) onto cellulose nanofibrils were determined. Nanofibrillated cellulose, also known as microfibrillated cellulose (MFC), with varying contents of carboxyl groups (different surface charge) was prepared by TEMPO-mediated oxidation followed by mechanical fibrillation. The fibril charge was characterized by potentiometric and conductometric titration. Surfactant adsorption was verified by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). Wetting and adhesion of water onto fibril films was determined by contact angle measurements. Small aggregates (admicelles) of surfactant were shown to form on the nanofibril surfaces, well below critical micelle concentrations. The results demonstrate the possibility of using cationic surfactants to systematically control the degree of water wettability of cellulose nanofibrils.  相似文献   
997.
Cellulose films were successfully prepared from NaOH/urea/zincate aqueous solution pre-cooled to −13 °C by coagulating with 5% H2SO4. The cellulose solution and regenerated cellulose films were characterized with dynamic rheology, ultraviolet–visible spectroscope, scanning electron microscopy, wide angle X-ray diffraction, Fourier transform infrared (FT-IR) spectrometer, thermogravimetry and tensile testing. The results indicated that at higher temperature (above 65 °C) or lower temperature (below −10 °C) or for longer storage time, gels could form in the cellulose dope. However, the cellulose solution remained a liquid state for a long time at 0–10 °C. Moreover, there was an irreversible gelation in the cellulose solution system. The films with cellulose II exhibited better optical transmittance, high thermal stability and tensile strength than that prepared by NaOH/urea aqueous solution without zincate. Therefore, the addition of zincate in the NaOH/urea aqueous system could enhance the cellulose solubility and improve the structure and properties of the regenerated cellulose films.  相似文献   
998.
The electrodialysis of an aqueous solution of an alkaline earth complex with ethylenediaminetetraacetic acid (EDTA) was studied in a wide range of current densities. The curve of the complexonate flow across an anionite membrane versus current density has three characteristic sections. The first section corresponds to a linear increase in the flow as a function of current density, the second to a decrease in the flow and decomposition of the complex (barrier effect), and the third to an increase in the complexonate flow due to the transport coupled with the flow of hydroxyl ions formed in the dissociation of water molecules at the interface of the solution and the anionite membrane. Conditions for complete separation of the singly and doubly charged cations were found.  相似文献   
999.
An amperometric sensor using foam nickel electrode as the working electrode for the measurement of ethanol in alkaline solution has been developed. Cyclic voltammetry and chronoamperometry are employed to analyze electrochemical behavior of the electrode. The results show that the oxidation of ethanol is more efficient on the foam nickel electrode than that on the nickel foil electrode. The sensor exhibits a good linear relationship between response current and ethanol concentration in the range of 4 to 1400 ppm with a detection limit of 0.8 ppm. The sensitivity and the response time of the sensor are 4.63 μA/ppm and 10 s respectively. Additionally, the sensor has 60 days shelf-life time at least.  相似文献   
1000.
The Schiff base compound (Z)-1-((4-phenylamino)phenylamino)methylene)naphthalen-2(1H)-one has been synthesized and characterized by IR, UV–Vis, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree–Fock (HF) and density functional method (B3LYP) with 6−31G(d,p) basis set. Calculated results show that density functional theory DFT and HF can well reproduce the structure of the title compound. Using the time-dependent density functional theory (TD-DFT) and Hartree–Fock (TD-HF) methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and experimental ones is determined. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6−31G(d,p) basis set by applying the polarizable continuum model (PCM). The total energy of the title compound decreases with increasing polarity of the solvent. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital analysis (NBO), and non-linear optical (NLO) properties were performed at B3LYP/6−31G(d,p) level of theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号