首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2983篇
  免费   103篇
  国内免费   19篇
化学   2368篇
晶体学   31篇
力学   38篇
数学   299篇
物理学   369篇
  2024年   2篇
  2023年   17篇
  2022年   24篇
  2021年   47篇
  2020年   70篇
  2019年   66篇
  2018年   45篇
  2017年   34篇
  2016年   75篇
  2015年   70篇
  2014年   83篇
  2013年   118篇
  2012年   257篇
  2011年   314篇
  2010年   124篇
  2009年   106篇
  2008年   227篇
  2007年   255篇
  2006年   222篇
  2005年   231篇
  2004年   204篇
  2003年   161篇
  2002年   165篇
  2001年   37篇
  2000年   34篇
  1999年   15篇
  1998年   17篇
  1997年   17篇
  1996年   25篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有3105条查询结果,搜索用时 31 毫秒
991.
Photochemistry of adsorbed nitrate   总被引:2,自引:0,他引:2  
In the atmosphere, gas-phase nitrogen oxides including nitric acid react with particle surfaces (e.g., mineral dust and sea salt aerosol) to yield adsorbed nitrate, yet little is known about the photochemistry of nitrate on the surface of these particles. In this study, nitrate adsorbed on alumina surfaces, a surrogate for mineral dust aerosol, is irradiated with broadband light (lambda > 300 nm) in the absence and presence of coadsorbed water, at <1% and 45 +/- 2% relative humidity (%RH), respectively, and molecular oxygen. Upon irradiation, the nitrate ion readily undergoes photolysis to yield nitrogen-containing gas-phase products, NO2, NO, and N2O. Although NO2, NO, and N2O form under the different conditions investigated, both coadsorbed water and molecular oxygen change the gas-phase product distribution, with NO being the major product under dry and humid conditions in the absence of molecular oxygen and NO2 the major product in the presence of molecular oxygen. To the best of our knowledge, this is the first study to investigate the role of solvation by coadsorbed water in the photochemistry of adsorbates at solid interfaces and the roles that molecular oxygen, adsorbed water, and relative humidity may have in photochemical processes on aerosol surfaces that have the potential to alter the chemical balance of the atmosphere.  相似文献   
992.
Immobilization of proteins onto solid supports is important in the preparation of functional protein microarrays and in the development of bead-based bioassays, biosensors, and industrial biocatalysts. In order to generate the stable, functional, and homogeneous materials required for these applications, attention has focused on methods that enable the efficient and site-specific covalent immobilization of recombinant proteins onto a wide range of platforms. To this end, the phosphopantetheinyl transferase Sfp was employed to catalyze the direct immobilization of recombinant proteins bearing the small, genetically encoded ybbR tag onto surfaces functionalized with CoA. Using mass spectrometry, it was shown that the Sfp catalyzes immobilization of a model acyl carrier protein (ACP) onto CoA-derivatized PEGA resin beads through specific covalent bond formation. Luciferase (Luc) and glutathione-S-transferase (GST) ybbR-fusion proteins were similarly immobilized onto PEGA resin retaining high levels of enzyme activity. This strategy was also successfully applied for the immobilization of the ACP, as well as ybbR-Luc, -GST, and -thioredoxin fusion proteins, on hydrogel microarray slides. Overall, the Sfp-catalyzed surface ligation is mild, quantitative, and rapid, occurring in a single step without prior chemical modification of the target protein. Immobilization of the target proteins directly from a cell lysate mixture was also demonstrated.  相似文献   
993.
Chemical shift anisotropy (CSA) has been an invaluable probe of structure and dynamics for a variety of systems in NMR spectroscopy. Unfortunately, the presence of strong quadrupolar couplings has severely limited the ability to measure CSA in nuclei with spins I > 1/2. Here we show that these two interactions can be refocused at different times in a 2D multiple-quantum NMR experiment on polycrystalline samples. Combining this experiment with appropriate affine transformations allows these interactions to be cleanly separated into orthogonal dimensions. The 1D projection onto each axis can be fit to extract the respective principal tensor components. These components can then be used to fit the 2D spectrum for the relative orientation between the CSA and quadrupolar-coupling tensors. The necessary affine transformation parameters are given for all possible I values. Illustrative examples of spectra and analyses are given for 63Cu in K3[Cu(CN)4], 59Co in K3[Co(CN)6], and 87Rb in RbCrO4.  相似文献   
994.
Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 +/- 0.05 and 0.16 +/- 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.  相似文献   
995.
D-sorbitol forms so-called spherulites from under-cooled melts. These polycrystalline formations have optically uniaxial radii. Melts pressed between glasses crystallize as plane sections of spheres. Dyes that are soluble in molten sorbitol become oriented as the crystallization front passes through the melt so as to form disks with large linear dichroism in the absorption bands of the dyes. The dyeing of spherulites is thus a general method of solute alignment. The linear optical properties of sorbitol spherulites containing the azo dye amaranth were analyzed in detail so as to correct a persistent confusion in the literature regarding the orientational dependence of linear dichroism. In cases involving thin film dichroism of multilayered samples requiring many corrections of intensity data in non-normal incidence, some authors have taken transmittance and others absorbance as having a cosine-squared angular dependence on the plane of the electric vector of linearly polarized light. Plane sections of doped spherulites present all orientations of an electric dipole oscillator in spatially localized region in normal incidence. As such, the samples described herein are ideally suited to resolving this confusion. Images of transmittance of dyed spherulites in polarized light were recorded with a CCD camera and simulated under the assumption that both absorbance and transmittance show a cosine-squared angular dependence but with respect to different angles. Transmittance with a cosine-squared dependence follows azimuthal rotations of the spherulite radii around the wave vector, while absorbance with a cosine-squared dependence follows rotations about axes perpendicular to the wave vector, natural consequences of the properties of the optical indicatrix that are often overlooked. Spherulites obviate the substantial experimental complexities that are engendered in non-normal incidence by sample reorientation. Thus, the principles of anisotropic absorption are given in a complete and intuitive fashion.  相似文献   
996.
A microporous metal-organic framework, PCN-14, based on an anthracene derivative, 5,5'-(9,10-anthracenediyl)di-isophthalate (H4adip), was synthesized under solvothermal reaction conditions. X-ray single crystal analysis revealed that PCN-14 consists of nanoscopic cages suitable for gas storage. N2-adsorption studies of PCN-14 at 77 K reveal a Langmuir surface area of 2176 m2/g and a pore volume of 0.87 cm3/g. Methane adsorption studies at 290 K and 35 bar show that PCN-14 exhibits an absolute methane-adsorption capacity of 230 v/v, 28% higher than the DOE target (180 v/v) for methane storage.  相似文献   
997.
Recent structural and computational studies have shed new light on the catalytic mechanism and active site structure of the RNA cleaving hammerhead ribozyme. Consequently, specific ribozyme functional groups have been hypothesized to be directly involved in general/acid base catalysis. In order to test this hypothesis, we have developed an affinity label to identify the functional general base in the S. mansoni hammerhead ribozyme. The ribozyme was reacted with a substrate analogue bearing a 2'-bromoacetamide group in place of the nucleophilic 2'-hydroxyl group which would normally be deprotonated by a general base. The electrophilic 2'-bromoacetamide group is poised to alkylate the general base, which is subsequently identified by footprinting analysis. Herein, we demonstrate alkylation of N1 of G12 in the hammerhead ribozyme in a pH and [Mg(2+)] dependent manner that is consistent with the native cleavage reaction. These results provide substantial evidence that deprotonated N1 of G12 functions directly as a general base in the hammerhead ribozyme; moreover, our experiments provide evidence that the pKa of G12 is perturbed downward in the context of the active site structure. We also observed other pH-independent alkylations, which do not appear to reflect the catalytic mechanism, but offer further insight into ribozyme conformation and structure.  相似文献   
998.
Lithiated aryl carbamates (ArLi) bearing methoxy or fluoro substituents in the meta position are generated from lithium diisopropylamide (LDA) in THF, n-BuOMe, Me2NEt, dimethoxyethane (DME), N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethylcyclohexanediamine (TMCDA), and hexamethylphosphoramide (HMPA). The aryllithiums are shown with (6)Li, (13)C, and (15)N NMR spectroscopies to be monomers, ArLi-LDA mixed dimers, and ArLi-LDA mixed trimers, depending on the choice of solvent. Subsequent Snieckus-Fries rearrangements afford ArOLi-LDA mixed dimers and trimers of the resulting phenolates. Rate studies of the rearrangement implicate mechanisms based on monomers, mixed dimers, and mixed trimers.  相似文献   
999.
A new method is described, based on living amphipathic random macro-RAFT copolymers, which enables the efficient polymeric encapsulation of both inorganic and organic particulate materials via free-radical polymerization. The mechanism for this new approach is examined in the context of the polymer coating of zirconia- and alumina-coated titanium dioxide particles and its breadth of application demonstrated by the coating of organic phthalocyanine blue pigment particles. The particulate materials were first dispersed in water using a macro-RAFT copolymer as a stabilizer. Monomer and water-soluble initiator were then added to the system, and the monomer polymerized to form the coating. If nucleation of new polymer particles in the aqueous phase was to be avoided, it was found necessary to use a macro-RAFT copolymer that did not form micelles; within this constraint, a broad range of RAFT agents could be used. The macro-RAFT agents used in this work were found not to transfer competitively in the aqueous phase and therefore did not support growth of aqueous-phase polymer. Successful encapsulation of particles was demonstrated by TEM. The process described enables 100% of the particles to be encapsulated with greater than 95% of the polymer finishing up in the polymeric shells around the particles. Moreover, the coating reaction can be carried out at greater than 50% solids in many cases and avoids the agglomeration of particles during the coating step.  相似文献   
1000.
This article reports real-time observations and detailed modeling of the transient response of thin aqueous films bounded by a deformable surface to external mechanical and electrical perturbations. Such films, tens to hundreds of nanometers thick, are confined between a molecularly smooth mica plate and a deformable mercury/electrolyte interface on a protuberant drop at a sealed capillary tube. When the mercury is negatively charged, the water forms a wetting film on mica, stabilized by electrical double layer forces. Mechanical perturbations are produced by driving the mica plate toward or by retracting the mica plate from the mercury surface. Electrical perturbations are applied to change the electrical double layer interaction between the mica and the mercury by imposing a step change of the bias voltage between the mercury and the bulk electrolyte. A theoretical model has been developed that can account for these observations quantitatively. Comparison between experiments and theory indicates that a no-slip hydrodynamic boundary condition holds at the molecularly smooth mica/electrolyte surface and at the deformable mercury/electrolyte interface. An analysis of the transient response based on the model elucidates the complex interplay between disjoining pressure, hydrodynamic forces, and surface deformations. This study also provides insight into the mechanism and process of droplet coalescence and reveals a novel, counterintuitive mechanism that can lead to film instability and collapse when an attempt is made to thicken the film by pulling the bounding mercury and mica phases apart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号