首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3904篇
  免费   150篇
  国内免费   20篇
化学   3037篇
晶体学   32篇
力学   61篇
数学   424篇
物理学   520篇
  2024年   5篇
  2023年   28篇
  2022年   45篇
  2021年   63篇
  2020年   103篇
  2019年   89篇
  2018年   56篇
  2017年   41篇
  2016年   109篇
  2015年   95篇
  2014年   115篇
  2013年   147篇
  2012年   310篇
  2011年   383篇
  2010年   158篇
  2009年   139篇
  2008年   281篇
  2007年   304篇
  2006年   266篇
  2005年   280篇
  2004年   243篇
  2003年   183篇
  2002年   188篇
  2001年   42篇
  2000年   38篇
  1999年   26篇
  1998年   26篇
  1997年   28篇
  1996年   31篇
  1995年   16篇
  1994年   20篇
  1993年   19篇
  1992年   6篇
  1991年   7篇
  1987年   8篇
  1986年   5篇
  1985年   10篇
  1983年   9篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1974年   4篇
  1972年   4篇
  1923年   6篇
  1892年   4篇
  1888年   5篇
  1887年   4篇
  1884年   3篇
  1882年   5篇
  1881年   6篇
排序方式: 共有4074条查询结果,搜索用时 31 毫秒
121.
With the growing use of high fields and ultrasensitive probes, radiation damping emerges as a significant feedback interaction in modern solution NMR. Motivated by recent observations of mysterious concentration-dependent frequency shifts, experiments carried out on a cryoprobe at 600 MHz have revealed a time-averaged frequency shift of up to +83/-81 Hz. The sizable frequency shifts arise from deviations in the phase of the radiation damping field from perfect orthogonality relative to the net transverse magnetization. The frequency shift is shown to depend on the longitudinal magnetization and probe tuning conditions through experiments and numerical simulations. Such unexpected shifts in the solvent precession frequency provide a physical explanation for the empirical practice of adjusting the irradiation frequency of the saturating B1 field in solvent presaturation to achieve optimal suppression. Additional applications of the radiation damping induced frequency shift to solvent suppression and NMR methodology are discussed.  相似文献   
122.
Sugar-oligoamides have been designed and synthesized as structurally simple carbohydrate-based ligands to study carbohydrate-DNA interactions. The general design of the ligands 1-3 has been done as to favor the bound conformation of Distamycin-type gamma-linked covalent dimers which is a hairpin conformation. Indeed, NMR analysis of the sugar-oligoamides in the free state has indicated the presence of a percentage of a hairpin conformation in aqueous solution. The DNA binding activity of compounds 1-3 was confirmed by calf thymus DNA (ct-DNA) NMR titration. Interestingly, the binding of the different sugar-oligoamides seems to be modulated by the sugar configuration. Semiquantitative structural information about the DNA ligand complexes has been derived from NMR data. A competition experiment with Netropsin suggested that the sugar-oligoamide 3 bind to DNA in the minor groove. The NMR titrations of 1-3 with poly(dA-dT) and poly(dG-dC) suggested preferential binding to the ATAT sequence. TR-NOE NMR experiments for the sugar-oligoamide 3-ct-DNA complex both in D(2)O and H(2)O have confirmed the complex formation and given information on the conformation of the ligand in the bound state. The data confirmed that the sugar-oligoamide ligand is a hairpin in the bound state. Even more relevant to our goal, structural information on the conformation around the N-glycosidic linkage has been accessed. Thus, the sugar asymmetric centers pointing to the NH-amide and N-methyl rims of the molecule have been characterized.  相似文献   
123.
The use of AgII as a removable template in synthetic porphyrin chemistry is described. Mild procedures for the insertion of AgII into chlorins and the demetallation of the [chlorinato]AgII complexes are delineated. The UV-vis spectra of the novel [chlorinato]AgII complexes are discussed. The diol cleavage products of [meso-tetraphenyl-2,3-diolchlorinato]silver(II) under a number of conditions are characterized and compared to those resulting from the cleavage of the corresponding free base diol chlorin or its NiII complex, highlighting the unique templating effect of AgII. The scopes and limits of electrospray ionization mass spectrometry (ESI-MS) for the analysis of AgII chlorins is described. The use of AgII as a templating metal is superior over NiII or ZnII for the preparation of free base pyrrole-modified porphyrins along metal templated pathways.  相似文献   
124.
  相似文献   
125.
A series of copper-dioxygen adducts [{Cu(II)(MePY2)(R)}(2)(O(2))](B(C(6)F(5))(4))(2) (1(R)()), systematically varying in their electronic properties via ligand pyridyl donor substituents (R = H, MeO, and Me(2)N), oxidize a variety of substrates with varying C-H or O-H bond dissociation enthalpies. Detailed mechanistic studies have been carried out, including investigation of 1(R)() thermodynamic redox properties, 1(R)() tetrahydrofuran (THF) and N,N'-dimethylaniline (DMA) oxidation kinetics (including analyses of substrate dicopper binding equilibria), and application of mechanistic probes (N-cyclopropyl-N-methylaniline (CMA) and (p-methoxyphenyl)-2,2-dimethylpropanol (MDP)), which can distinguish if proton-coupled electron-transfer (PCET) processes proceed through concerted electron-transfer proton-transfer (ETPT) or consecutive electron-transfer proton-transfer (ET/PT) pathways. The results are consistent with those of previous complementary studies; at low thermodynamic driving force for substrate oxidation, an ET/PT is operable, but once ET (i.e., substrate one-electron oxidation) becomes prohibitively uphill, the ETPT pathway occurs. Possible differences in coordination structures about 1(Me)()()2(N)()/1(MeO)() compared to those of 1(H)() are also used to rationalize some of the observations.  相似文献   
126.
Halfen JA  Moore HL  Fox DC 《Inorganic chemistry》2002,41(15):3935-3943
We report the synthesis, structural and spectroscopic characterization, and magnetic and electrochemical studies of a series of iron(II) complexes of the pyridyl-appended diazacyclooctane ligand L(8)py(2), including several that model the square-pyramidal [Fe(II)(N(his))(4)(S(cys))] structure of the reduced active site of the non-heme iron enzyme superoxide reductase. Combination of L(8)py(2) with FeCl(2) provides [L(8)py(2)FeCl(2)] (1), which contains a trigonal-prismatic hexacoordinate iron(II) center, whereas a parallel reaction using [Fe(H(2)O)(6)](BF(4))(2) provides [L(8)py(2)Fe(FBF(3))]BF(4) (2), a novel BF(4)(-)-ligated square-pyramidal iron(II) complex. Substitution of the BF(4)(-) ligand in 2 with formate or acetate ions affords distorted pentacoordinate [L(8)py(2)Fe(O(2)CH)]BF(4) (3) and [L(8)py(2)Fe(O(2)CCH(3))]BF(4) (4), respectively. Models of the superoxide reductase active site are prepared upon reaction of 2 with sodium salts of aromatic and aliphatic thiolates. These model complexes include [L(8)py(2)Fe(SC(6)H(4)-p-CH(3))]BF(4) (5), [L(8)py(2)Fe(SC(6)H(4)-m-CH(3))]BF(4) (6), and [L(8)py(2)Fe(SC(6)H(11))]BF(4) (7). X-ray crystallographic studies confirm that the iron(II)-thiolate complexes model the square-pyramidal geometry and N(4)S donor set of the reduced active site of superoxide reductase. The iron(II)-thiolate complexes are high spin (S = 2), and their solutions are yellow in color because of multiple charge-transfer transitions that occur between 300 and 425 nm. The ambient temperature cyclic voltammograms of the iron(II)-thiolate complexes contain irreversible oxidation waves with anodic peak potentials that correlate with the relative electron donating abilities of the thiolate ligands. This electrochemical irreversibility is attributed to the bimolecular generation of disulfides from the electrochemically generated iron(III)-thiolate species.  相似文献   
127.
A methodology to synthesize oligonucleotides containing an alkyl interstrand cross-link between the two O6 atoms of deoxyguanosine has been developed. This cross-link is designed to serve as a stable structural mimic of the lesion formed in duplex DNA with the bifunctional alkylating agent hepsulfam. The O6-alkyl coupling is performed via a Mitsunobu reaction between a nucleoside and mono-protected 1,7-heptanediol. Solid-phase oligonucleotide synthesis using a nucleoside bis-phosphoramidite allows for the assembly of the cross-linked duplex. Sufficient quantities of this cross-linked duplex were obtained for various structural and biological investigations.  相似文献   
128.
Chiral crown ethers 1 and 5 are useful enantiomeric discriminating agents in 1H NMR spectroscopy for neutral and protonated primary amines, amino acids, and amino alcohols. The presence of the carboxylic acid groups in 1 and 5 provide sites at which ytterbium(III) can bind. Adding ytterbium(III) nitrate to crown–substrate mixtures in methanol-d4 causes shifts in the spectra of substrates and often enhances the chiral discrimination in the 1H NMR spectrum. The enhancement in enantiomeric discrimination that occurs in the presence of ytterbium(III) allows lower concentrations of the crown ether to be used in chiral recognition studies. Several amide derivatives of 1 were prepared and evaluated as chiral NMR discriminating agents, although except for 1e, these were less effective than 1.  相似文献   
129.
130.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号