首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6871篇
  免费   323篇
  国内免费   40篇
化学   5154篇
晶体学   62篇
力学   214篇
数学   599篇
物理学   1205篇
  2024年   7篇
  2023年   55篇
  2022年   151篇
  2021年   162篇
  2020年   156篇
  2019年   160篇
  2018年   134篇
  2017年   133篇
  2016年   260篇
  2015年   236篇
  2014年   299篇
  2013年   486篇
  2012年   619篇
  2011年   622篇
  2010年   380篇
  2009年   321篇
  2008年   483篇
  2007年   425篇
  2006年   360篇
  2005年   317篇
  2004年   316篇
  2003年   241篇
  2002年   204篇
  2001年   100篇
  2000年   77篇
  1999年   56篇
  1998年   30篇
  1997年   23篇
  1996年   41篇
  1995年   30篇
  1994年   28篇
  1993年   34篇
  1992年   30篇
  1991年   21篇
  1990年   23篇
  1989年   19篇
  1988年   11篇
  1987年   19篇
  1986年   13篇
  1985年   17篇
  1984年   16篇
  1983年   9篇
  1982年   11篇
  1981年   12篇
  1980年   13篇
  1979年   11篇
  1978年   8篇
  1977年   8篇
  1976年   9篇
  1975年   9篇
排序方式: 共有7234条查询结果,搜索用时 15 毫秒
101.
We have synthesized a novel class of imidazole-based excited-state intramolecular proton-transfer (ESIPT) materials, i.e., hydroxy-substituted tetraphenylimidazole (HPI) and its derivative HPI-Ac, which formed large single crystals exhibiting intense blue fluorescence and amplified spontaneous emission (ASE). Transparent, clear, and well-defined fluorescent single crystals of HPI-Ac as large as 20 mm x 25 mm x 5 mm were easily grown from its dilute solution. From the X-ray crystallographic analysis and semiempirical molecular orbital calculation, it was deduced that the four phenyl groups substituted into the imidazole ring of HPI and HPI-Ac allowed the crystals free from concentration quenching of fluorescence by limiting the excessive tight-stacking responsible for intermolecular vibrational coupling and relevant nonradiative relaxation. Fluorescence spectral narrowing and efficient ASE were observed in the HPI-Ac single crystal even at low excitation levels attributed to the intrinsic four-level ESIPT photocycle.  相似文献   
102.
Hydrolysis and hydrogenation of [RhCl(tppms)3] (1) and trans-[RhCl(CO)(tppms)2] (2) was studied in aqueous solutions in a wide pH range (2 < pH < 11) in the presence of excess TPPMS (3-diphenylphosphinyl-benzenesulfonic acid sodium salt). In acidic solutions hydrogenation of 1 yields a mixture of cis-mer- and cis-fac-[RhClH2(tppms)3] (3a,b) while in strongly basic solutions [RhH(H2O)(tppms)3] (4) is obtained, the midpoint of the equilibrium between these hydride species being at pH 8.2. The paper gives the first successful 1H and 31P NMR spectroscopic characterization of a water soluble rhodium(I)-monohydride (4) bearing only monodentate phosphine ligands. Hydrolysis of 2 is negligible below pH 9 and its hydrogenation results in formation of [Rh(CO)H(tppms)3] (5), which is an analogue to the well known and industrially used hydroformylation catalyst [Rh(CO)H(tppts)3] (6) (TPPTS = 3,3',3'-phosphinetriyltris(benzenesulfonic acid) trisodium salt). It was shown by pH-potentiometric measurements that formation of 5 is strongly pH dependent in the pH 5-9 range, this gives an explanation for the observed but previously unexplained pH dependence of several hydroformylation reactions. Conversely, the effect of pH on the rate of hydrogenation of maleic and fumaric acid catalyzed by 1 in the 2 < pH < 7 range can be adequately described by considering solely the changes in the ionization state of these substrates. All these results warrant the use of buffered (pH-controlled) solutions for aqueous organometallic catalysis.  相似文献   
103.
Bistable [2]rotaxanes display controllable switching properties in solution, on surfaces, and in devices. These phenomena are based on the electrochemically and electrically driven mechanical shuttling motion of the ring-shaped component, cyclobis(paraquat-p-phenylene) (CBPQT(4+)) (denoted as the ring), between a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) ring system located along a dumbbell component. When the ring is encircling the TTF unit, this co-conformation of the rotaxane is the most stable and thus designated the ground-state co-conformer (GSCC), whereas the other co-conformation with the ring surrounding the DNP ring system is less favored and so designated the metastable-state co-conformer (MSCC). We report here the structure and properties of self-assembled monolayers (SAMs) of a bistable [2]rotaxane on Au (111) surfaces as a function of surface coverage based on atomistic molecular dynamics (MD) studies with a force field optimized from DFT calculations and we report several experiments that validate the predictions. On the basis of both the total energy per rotaxane and the calculated stress that is parallel to the surface, we find that the optimal packing density of the SAM corresponds to a surface coverage of 115 A(2)/molecule (one molecule per 4 x 4 grid of surface Au atoms) for both the GSCC and MSCC, and that the former is more stable than the latter by 14 kcal/mol at the optimum packing density. We find that the SAM retains hexagonal packing, except for the case at twice the optimum packing density (65 A(2)/molecule, the 3 x 3 grid). For the GSCC and MSCC, investigated at the optimum coverage, the tilt of the ring with respect to the normal is theta = 39 degrees and 61 degrees, respectively, while the tilt angle of the entire rotaxane is psi = 41 degrees and 46 degrees , respectively. Although the tilt angle of the ring decreases with decreasing surface coverage, the tilt angle of the rotaxane has a maximum at 144 A(2)/molecule (the 4 x 5 grid/molecule) of 50 degrees and 51 degrees for the GSCC and MSCC, respectively. The hexafluorophosphate counterions (PF(6)(-)) stay localized around the ring during the 2 ns MD simulation. On the basis of the calculated density profile, we find that the thickness of the SAM is 40.5 A at the optimum coverage for the GSCC and 40.0 A for MSCC, and that the thicknesses become less with decreasing surface coverage. The calculated surface tension at the optimal packing density is 45 and 65 dyn/cm for the GSCC and MSCC, respectively. This difference suggests that the water contact angle for the GSCC is larger than for the MSCC, a prediction that is verified by experiments on Langmuir-Blodgett monolayers of amphiphilic [2]rotaxanes.  相似文献   
104.
Three new pregnane glycosides, cynatroside A ( 1 ), cynatroside B ( 2 ), and cynatroside C ( 3 ), isolated from the roots of Cynanchum atratum (Asclepiadaceae), were characterized as 7β‐{[Oα‐L ‐cymaropyranosyl‐(1→4)‐Oβ‐D ‐digitoxopyranosyl‐(1→4)‐β‐D ‐oleandropyranosyl]oxy}‐3,4,4a,4b,5,6,7,8,10,10a‐decahydro‐6α‐hydroxy‐4b‐ methyl‐2‐(2‐methyl‐3‐furyl)phenanthren‐1(2H)‐one ( 1 ), 7β‐{[Oβ‐D ‐cymaropyranosyl‐(1→4)‐Oα‐L ‐diginopyranosyl‐(1→4)‐β‐D ‐cymaropyranosyl]oxy}‐3,4,4a,4b,5,6,7,8,10,10a‐decahydro‐2,6α‐dihydroxy‐4b‐methyl‐2‐(2‐methyl‐3‐furyl)phenanthren‐1(2H)‐one ( 2 ), and 7β‐{[Oα‐L ‐cymaropyranosyl‐(1→4)‐Oβ‐D ‐digitoxopyranosyl‐(1→4)‐β‐L ‐cymaropyranosyl]oxy}‐3,4,4a,4b,5,6,7,8,10,10a‐decahydro‐2,6α‐dihydroxy‐4b‐methyl‐2‐(2‐methyl‐3‐furyl)phenanthren‐1(2H)‐one ( 3 ), respectively. In addition, ten known constituents were identified, i.e., cynascyroside D ( 4 ), glaucoside C ( 5 ), glaucoside D ( 6 ), atratoside A ( 7 ), 2,4‐dihydroxyacetophenone ( 8 ), 4‐hydroxyacetophenone ( 9 ), syringic acid ( 10 ), azelaic acid ( 11 ), suberic acid ( 12 ), and succinic acid ( 13 ). Among these compounds, 1 – 4 significantly inhibit acetylcholinesterase activity.  相似文献   
105.
Low molecular, water‐soluble chitosan (LMWSC) with a free amine group was prepared by the novel salts‐removal method described in this study. A weight‐average molecular weight and degree of deacetylation (DDA) of LMWSC were determined by viscometry and Kina titration, resulting in 18,579 Da and 93% DDA, respectively. In the Fourier transform infrared spectroscopic, 1H NMR, and 13C NMR spectra the absorption band by the carboxyl group derived from lactic acid and the impurities formed in the enzymatic process disappeared or were significantly lower than that of the control chitosan. Also, from the 1H NMR and 13C NMR spectra the empirical value for the area ratio of the proton and carbon corresponds nearly to its theoretical values. The matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrum identified the difference in the two adjacent peaks as 161. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3796–3803, 2002  相似文献   
106.
107.
108.
The counterion binding at a water/Aerosol-OT (AOT)/heptane microemulsion interface was treated in the context of the pseudo-phase ion exchange formalism. Two approaches were used to determine the selectivity coefficient for copper/sodium counterion binding at the AOT microemulsion interface: measurements of the Cu(II) concentration taken up by the reverse micelle in a Winsor II microemulsion system and steady-state emission quenching measurements of an anionic water-solubilized probe, the tris-(4,4'-dicarboxy-2,2'-bipyridine) ruthenium (II) ion. In addition, the selectivity coefficient for methyl viologen/sodium at the microemulsion surface was determined by the same photophysical technique. The value for copper (II)/sodium exchange (K(Cu/Na)) is 1.1+/-0.3 and that for methyl viologen/sodium (K(MV/Na)) is 0.9+/-0.3. The results show that the pseudo-phase ion exchange model can be used to obtain the selectivity coefficient in a microemulsion system.  相似文献   
109.
Sol-gel-derived Mg(OH)(2) gel was coated onto TiO(2) nanoparticles, and the subsequent thermal topotactic decomposition of the gel formed a highly nanoporous MgO crystalline coating. The specific surface area of the electrode that was prepared from the core-shell-structured TiO(2) nanoparticles significantly increased compared with that of the uncoated TiO(2) electrode. The increase in the specific surface area of the MgO-coated TiO(2) electrode was attributed to the highly nanoporous MgO coating layer that resulted from the topotactic reaction. Dye adsorption behavior and solar cell performance were significantly enhanced by employing the MgO-coated TiO(2) electrode. Optimized coating of a MgO layer on TiO(2) nanoparticles enhanced the energy conversion efficiency as much as 45% compared to that of the uncoated TiO(2) electrode. This indicates that controlling the extrinsic parameters such as the specific surface area is very important to improve the energy conversion efficiency of TiO(2)-based solar cells.  相似文献   
110.
The phototoxicity of cyamemazine (CMZ, Tercian), a neuroleptic of the phenothiazine family, has recently been reported in humans. CMZ has an absorbance maximum at 267 nm (molar absorptivity, 25,800 M(-1) cm(-1)) but a weaker molar absorptivity in the ultraviolet A (UV-A) region. CMZ exhibits a fluorescence with maximum emission at 535 nm and a quantum yield of 0.11. CMZ is a powerful photosensitizing agent toward HS 68 human skin fibroblasts and NCTC 2544 keratinocytes. At a UV-A radiation dose of 10 J/cm2, innocuous to cells in the absence of CMZ, the LD50 (lethal dose corresponding to 50% killing) are 0.5 and 1 microM for the fibroblasts and the keratinocytes, respectively, after overnight incubation with the drug. Short incubation times do not significantly alter the LD50. The CMZ-induced phototoxicity is accompanied by lipid membrane peroxidation consistent with the amphiphilic character of this photosensitizer. Keratinocytes are an order of magnitude less sensitive to the photosensitized lipid peroxidation than fibroblasts. Microspectrofluorometry reveals that lysosomal membranes are major sites of CMZ incorporation into the two cell lines because a Forster-type resonance energy transfer process occurs from CMZ to LysoTracker Red DND99 (LTR), a specific fluorescent probe of lysosomal membranes. The CMZ-photosensitized destruction of LTR demonstrates that CMZ retains its photosensitizing capacity after its lysosomal uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号