首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2137篇
  免费   46篇
  国内免费   9篇
化学   1406篇
晶体学   10篇
力学   37篇
数学   403篇
物理学   336篇
  2021年   30篇
  2020年   21篇
  2019年   22篇
  2018年   19篇
  2017年   18篇
  2016年   37篇
  2015年   30篇
  2014年   32篇
  2013年   119篇
  2012年   90篇
  2011年   107篇
  2010年   65篇
  2009年   52篇
  2008年   93篇
  2007年   91篇
  2006年   107篇
  2005年   117篇
  2004年   88篇
  2003年   75篇
  2002年   66篇
  2001年   29篇
  2000年   27篇
  1999年   20篇
  1998年   22篇
  1997年   26篇
  1996年   27篇
  1995年   31篇
  1994年   23篇
  1993年   24篇
  1992年   31篇
  1991年   24篇
  1990年   16篇
  1989年   18篇
  1988年   26篇
  1986年   17篇
  1985年   45篇
  1984年   42篇
  1983年   31篇
  1982年   43篇
  1981年   40篇
  1980年   47篇
  1979年   29篇
  1978年   37篇
  1977年   32篇
  1976年   27篇
  1975年   29篇
  1974年   24篇
  1973年   19篇
  1972年   15篇
  1969年   13篇
排序方式: 共有2192条查询结果,搜索用时 531 毫秒
991.
We induce and study reactions of polyoxometalate (POM) molecules, [PW12O40]3− (Keggin) and [P2W18O62]6− (Wells–Dawson), at the single-molecule level. Several identical carbon nanotubes aligned side by side within a bundle provided a platform for spatiotemporally resolved imaging of ca. 100 molecules encapsulated within the nanotubes by transmission electron microscopy (TEM). Due to the entrapment of POM molecules their proximity to one another is effectively controlled, limiting molecular motion in two dimensions but leaving the third dimension available for intermolecular reactions between pairs of neighbouring molecules. By coupling the information gained from high resolution structural and kinetics experiments via the variation of key imaging parameters in the TEM, we shed light on the reaction mechanism. The dissociation of W–O bonds, a key initial step of POM reactions, is revealed to be reversible by the kinetic analysis, followed by an irreversible bonding of POM molecules to their nearest neighbours, leading to a continuous tungsten oxide nanowire, which subsequently transforms into amorphous tungsten-rich clusters due to progressive loss of oxygen atoms. The overall intermolecular reaction can therefore be described as a step-wise reductive polycondensation of POM molecules, via an intermediate state of an oxide nanowire. Kinetic analysis enabled by controlled variation of the electron flux in TEM revealed the reaction to be highly flux-dependent, which leads to reaction rates too fast to follow under the standard TEM imaging conditions. Although this presents a challenge for traditional structural characterisation of POM molecules, we harness this effect by controlling the conditions around the molecules and tuning the imaging parameters in TEM, which combined with theoretical modelling and image simulation, can shed light on the atomistic mechanisms of the reactions of POMs. This approach, based on the direct space and real time chemical reaction analysis by TEM, adds a new method to the arsenal of single-molecule kinetics techniques.

We induce and study reactions of polyoxometalate (POM) molecules, [PW12O40]3− (Keggin) and [P2W18O62]6− (Wells–Dawson), at the single-molecule level, utilising TEM as an analytical tool, and nanotubes as test tubes.  相似文献   
992.
[reaction: see text] A short synthesis of (+/-)-spectinabilin via a trans-selective Suzuki coupling and subsequent Negishi-type methylation, and its biomimetic conversion to (+/-)-SNF4435C and (+/-)-SNF4435D is described.  相似文献   
993.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   
994.
The capillary electrochromatographic separations of three acidic enantiomers (carprofen, coumachlor and warfarin) were studied on a capillary column packed with 5 microm (3R,4S)-Whelk-O 1 chiral stationary phase. The influence of several experimental parameters (mobile phase pH, type of background electrolyte, acetonitrile ratio, temperature, applied voltage and ionic strength) on electroosmotic flow velocity, retention factor, selectivity factor, efficiency, resolution and effectiveness of chiral separation was evaluated. It was notable that the optimum resolution of the acidic enantiomers was achieved at pH 3.0 phosphate buffer, suggesting that capillary electrochromatography in the ion-suppressed mode can be applied for chiral separations of a range of acidic compounds.  相似文献   
995.
Diacenaphtho[1,2-c:1,2-e]-1,2-dithiin 2 was synthesized in 23% yield by the reaction of acenaphthylene with elemental sulfur at 120 °C. This reaction also afforded either diacenaphtho[1,2-b:1,2-d]thiophene 1 or diacenaphtho[1,2-b:1,2-e]-dihydro[e]-1,4-dithiin 3 depending on the reaction time. Compound 2 was desulfurized and converted to 1 under UV-vis irradiation in a benzene solution. Reaction of 2 with Pt(COD)2 yielded the complex Pt(COD)(C24H12S2) 4 (COD=1,5-cyclooctadiene) by insertion of a Pt(COD) group into the S-S bond of 2. When heated, 4 was desulfurized and converted to 1 by elimination of a (COD)PtS grouping. Compounds 1-4 were characterized crystallographically.  相似文献   
996.
Reactions of activated halo compounds XCH(2)-A (X = Br, I; A = ester, ketone) with C(60)(2-) anion give rise to C(60)(CH(2)-A)(2) adducts (major products) along with unexpected methanofullerenes C(60)>CH-A and monosubstituted dihydrofullerenes C(60)(H)(CH(2)-A) (minor products). Methanofullerenes are shown to come from side reactions with X(2)CH-A traces. [reaction: see text]  相似文献   
997.
We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as approximately 100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.  相似文献   
998.
Adams RD  Smith JL 《Inorganic chemistry》2005,44(12):4276-4281
The reaction of Rh(4)(CO)(12) with Ph(3)GeH at 97 degrees C has yielded the first rhodium cluster complexes containing bridging germylene and germylyne ligands: Rh(8)(CO)(12)(mu(4)-GePh)(6), 9, and Rh(3)(CO)(5)(GePh(3))(mu-GePh(2))(3)(mu(3)-GePh)(mu-H), 10. When the reaction is performed under hydrogen, the yield of 9 is increased to 42% and no 10 is formed. Compound 9 contains a cluster of eight rhodium atoms arranged in the form of a distorted cube. There are six mu(4)-GePh groups bridging each face of this distorted cube. Four of the rhodium atoms have two terminal carbonyl ligands, while the remaining four rhodium atoms have only one carbonyl ligand. Compound 10 contains a triangular cluster of three rhodium atoms with one terminal GePh(3) ligand, three bridging GePh(2) ligands, and one triply bridging GePh ligand. There is also one hydrido ligand that is believed to bridge one of the Rh-Ge bonds. Compound 9 reacted with PPhMe(2) at 25 degrees C to give the tetraphosphine derivative Rh(8)(CO)(8)(PPhMe(2))(4)(mu(4)-GePh)(6), 11. The structure of 11 is similar to 9 except that a PPhMe(2) ligand has replaced a carbonyl ligand on each the four Rh(CO)(2) groups. Compound 10 reacted with CO at 68 degrees C to give the complex Rh(3)(CO)(6)(mu-GePh(2))(3)(mu(3)-GePh), 12. Compound 12 is formed by the loss of the hydrido ligand and the terminal GePh(3) ligand from 10 and the addition of one carbonyl ligand. All compounds were fully characterized by IR, NMR, elemental, and single-crystal X-ray diffraction analyses.  相似文献   
999.
Some ion-formation processes during fast atom bombardment (FAB) are discussed, especially the possibility of reactions in the gas phase. Divided (two halves) FAB probe tips were used for introducing two different samples into the source at the same time. Our results showed [M + A]+ ions (where M = crown ethers and A = alkali metal ions), can be produced, at least in part, in the gas phase when crown ethers and sources of alkali metal ion are placed on two halves of the FAB probe tip. The extent of this ion formation depends on the volatility of the crown ether and on steric factors. Cluster ions such as (M + LiCl)Li+, (2M + LiCl)Li+, [2M + K]+ and [2M + Na]+ are also observed to form in the gas phase. Unimolecular decompositions contribute to some ions detected in FAB. When the alkali ion salt and the crown ether are mixed together the probability of [M + A]+ ion formation increases significantly, regardless of the volatility of the crown ether.  相似文献   
1000.
Dipole moments and their temperature dependence have been measured in p-dioxane for fractionated novolac phenol–, o-cresol–, and p-cresol–formaldehyde polymers. The phenol–formaldehyde fractions covered a molecular weight range of 200 to 6100, and the limiting dipole moment ratio 〈μ2〉/xm2 is 1.48. The p-cresol–formaldehyde dipole-moment ratio at a DP of 4 is 2.47, whereas the phenol–formaldehyde dipole-moment ratio is 1.40. That for o-cresol–formaldehyde is intermediate in value. The dipole-moment temperature coefficients are positive for p-cresol chains and negative for the phenol–formaldehyde chains. These results indicate that the hydroxyl groups along the p-cresol–formaldehyde polymer are highly ordered, with the aromatic rings closer to the sterically hindered planar position than in the phenol–formaldehyde polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号