首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452160篇
  免费   6110篇
  国内免费   1939篇
化学   241635篇
晶体学   6290篇
力学   19594篇
综合类   26篇
数学   58723篇
物理学   133941篇
  2020年   2842篇
  2019年   2817篇
  2018年   3941篇
  2017年   4111篇
  2016年   6226篇
  2015年   5143篇
  2014年   6654篇
  2013年   19996篇
  2012年   17600篇
  2011年   20679篇
  2010年   12967篇
  2009年   12910篇
  2008年   17682篇
  2007年   18048篇
  2006年   17396篇
  2005年   19349篇
  2004年   17356篇
  2003年   14225篇
  2002年   12392篇
  2001年   13814篇
  2000年   10613篇
  1999年   8366篇
  1998年   6667篇
  1997年   6491篇
  1996年   6483篇
  1995年   5917篇
  1994年   5559篇
  1993年   5279篇
  1992年   6000篇
  1991年   5841篇
  1990年   5385篇
  1989年   5222篇
  1988年   5501篇
  1987年   5096篇
  1986年   4922篇
  1985年   7154篇
  1984年   7180篇
  1983年   5851篇
  1982年   6309篇
  1981年   6241篇
  1980年   6036篇
  1979年   6120篇
  1978年   6163篇
  1977年   6114篇
  1976年   6053篇
  1975年   5902篇
  1974年   5708篇
  1973年   5938篇
  1972年   3479篇
  1971年   2488篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   
64.
65.
66.
67.
68.
In this paper, we have significantly modified an existing model for calculating the zeta potential and streaming potential coefficient of porous media and tested it with a large, recently published, high-quality experimental dataset. The newly modified model does not require the imposition of a zeta potential offset but derives its high salinity zeta potential behaviour from Stern plane saturation considerations. The newly modified model has been implemented as a function of temperature, salinity, pH, and rock microstructure both for facies-specific aggregations of the new data and for individual samples. Since the experimental data include measurements on samples of both detrital and authigenic overgrowth sandstones, it was possible to model and test the effect of widely varying microstructural properties while keeping lithology constant. The results show that the theoretical model represents the experimental data very well when applied to model data for a particular lithofacies over the whole salinity, from 10?5 to 6.3 mol/dm3, and extremely well when modelling individual samples and taking individual sample microstructure into account. The new model reproduces and explains the extreme sensitivity of zeta and streaming potential coefficient to pore fluid pH. The low salinity control of streaming potential coefficient by rock microstructure is described well by the modified model. The model also behaves at high salinities, showing that the constant zeta potential observed at high salinities arises from the development of a maximum charge density in the diffuse layer as it is compressed to the thickness of one hydrated metal ion.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号