首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   48篇
  国内免费   2篇
化学   791篇
晶体学   4篇
力学   28篇
数学   72篇
物理学   86篇
  2023年   13篇
  2022年   33篇
  2021年   38篇
  2020年   35篇
  2019年   27篇
  2018年   30篇
  2017年   21篇
  2016年   48篇
  2015年   44篇
  2014年   49篇
  2013年   73篇
  2012年   80篇
  2011年   78篇
  2010年   47篇
  2009年   37篇
  2008年   62篇
  2007年   38篇
  2006年   51篇
  2005年   42篇
  2004年   38篇
  2003年   28篇
  2002年   17篇
  2001年   6篇
  2000年   14篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   2篇
  1987年   2篇
  1985年   1篇
  1976年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有981条查询结果,搜索用时 78 毫秒
91.
A series of new symmetrical highly substituted BODIPYs 6 a – l was synthesized through a prefunctionalization approach in 35 %–89 % yields from the pyrrole core. This strategy allowed modulation of the substituents at the different positions based on the choice of Fischer's alkynyl carbenes, oxazolones and aldehydes used as precursors. The substituent variation at positions 2, 6, 3 and 5 had the greatest effect on the modulation of their photophysical properties such as absorption (λabs) and emission (λem) wavelengths, extinction coefficient (ϵ), quantum yields (ϕ), Stokes shifts (Δν), fluorescence decay, radiative (krad) and non-radiative (knr) constants and the CIE 1931 coordinates. Theoretical calculations allowed to corroborate the effect of the substituents of meso-position on the modification of the dihedral angles. Cyclic voltammetry studies revealed that the BODIPY series presents similar redox potential behavior, being electrochemically active even in successive cycles, which suggests that transport by diffusion is the dominant process.  相似文献   
92.
Phospholipids are major components of cell membranes and lipoprotein complexes. They are prone to oxidation by endogenous and exogenous reactive oxygen species yielding a large variety of modified lipids including small aliphatic and phospholipid bound aldehydes and ketones. These carbonyls are strong electrophiles that can modify proteins and, thereby, alter their structures and functions triggering various pathophysiological conditions. The analysis of lipid–protein adducts by liquid chromatography‐MS is challenged by their mixed chemical nature (polar peptide and hydrophobic lipid), low abundance in biological samples, and formation of multiple isomers. Thus, we investigated traveling wave ion mobility mass spectrometry (TWIMS) to analyze lipid–peptide adducts generated by incubating model peptides corresponding to the amphipathic β1 sheet sequence of apolipoprotein B‐100 with 1‐palmitoyl‐2‐(oxo‐nonanoyl)‐sn‐glycerophosphatidylcholine (PONPC). The complex mixture of peptides, lipids, and peptide–lipid adducts was separated by TWIMS, which was especially important for the identification of two mono‐PONPC‐peptide isomers containing Schiff bases at different lysine residues. Moreover, TWIMS separated structural conformers of one peptide–lipid adduct possessing most likely different orientations of the hydrophobic sn‐1 fatty acyl residue and head group of PONPC, relative to the peptide backbone. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
93.
-Hexyl­ammonium di­hydrogenarsenate, (C6­H16N)[AsO2(OH)2], and -octyl­ammonium di­hydrogenarsenate, (C8H20N)[AsO2(OH)2], are both ferroelastic at room temperature. The samples used in this study were not subjected to a phase transition after they had been crystallized. The structures are monoclinic (P21/n) and isostructural with the corresponding di­hydrogenphosphates. Each sample contained two domains and each structure was refined as a twin. There are strong hydrogen bonds between di­hydrogenarsenates and moderate hydrogen bonds between di­hydrogenarsenates and -alkyl­ammonium groups. The hydrogen-bond distances correspond well to those observed in the di­hydrogenphosphates. All the atoms except two H atoms exist in pairs linked by the lost symmetry operations derived from the prototypic space group P2/b21/n21/a. Each of these two different H atoms is involved in an asymmetric hydrogen bond between an oxy­gen pair. These oxy­gens are supposed to change their roles as hydrogen-bond donors and acceptors during the ferroelastic switching. The phase-transition sequences are affected by interactions between the neighbouring organic chains in the structure.  相似文献   
94.
Structural and mechanistic aspects of orthoplatination of acetophenone and benzaldehyde oximes by the platinum(II) sulfoxide and sulfide complexes [PtCl(2)L(2)] (2, L = SOMe(2) (a), rac-SOMePh (b), R-SOMe(C(6)H(4)Me-4) (c), and SMe(2) (d)) to afford the corresponding platinacycles cis-(C,S)-[Pt(II)(C(6)H(3)-2-CR'=NOH-5-R)Cl(L)] (3, R, R' = H, Me) have been investigated. The reaction of acetophenone oxime with sulfoxide complex 2a in methanol solvent occurs noticeably faster than with sulfide complex 2d due to the fact that the sulfoxide is a much better platinum(II) leaving ligand than the sulfide. Evidence is presented that the orthoplatination is a multistep process. The formation of unreactive dichlorobis(N-oxime)platinum(II) cations accounts for the rate retardation by excess acetophenone oxime and suggests the importance of pseudocoordinatively unsaturated species for the C-H bond activation by Pt(II). A comparative X-ray structural study of dimethyl sulfoxide platinacycle 3b (R = R' = Me) and its sulfide analogue 3e (R = H, R' = Me), as well as of SOMePh complex 3c (R = H, R' = Me), indicated that they are structurally similar and a sulfur ligand is coordinated in the cis position with respect to the sigma-bound phenyl carbon. The differences concern the Pt-S bond distance, which is notably longer in the sulfide complex 3e (2.2677(11) A) as compared to that in sulfoxide complexes 3b (2.201(2)-2.215(2) A) and 3c (2.2196(12) A). Whereas the metal plane is practically a plane of symmetry in 3b due to the H-bonding between the sulfoxide oxygen and the proton at carbon ortho to the Pt-C bond, an S-bonded methyl of SOMePh and SMe(2) is basically in the platinum(II) plane in complexes 3c and 3e, respectively. There are intra- and intermolecular hydrogen bond networks in complex 3b. An interesting structural feature of complex 3c is that the two independent molecules in the asymmetric unit of the crystal reveal an extremely short Pt-Pt contact of 3.337 A.  相似文献   
95.
The reactions of organoantimony chlorides L1,2SbCl21 and 2 ([2,6-(ROCH2)2C6H3], R = Me; L1 and R = t-Bu; L2) with silver salts of selected carboxylic acids resulted to corresponding organoantimony carboxylates L1,2Sb(OOCR′)2, 1a-c (for L1) and 2a-c (for L2), where R′ = CH3 for 1a, 2a; R′ = CHCH2 for 1b, 2b and R′ = CF3 for 1c, 2c. All compounds were characterized by the help of elemental analysis, ESI-MS, 1H and 13C NMR spectroscopy. The solid state structure investigation using single crystal X-ray diffraction techniques (2a, c) and IR spectroscopy revealed significant differences in coordination mode of both O,C,O chelating ligand and carboxylic groups in this set of compounds. The structure of all compounds in solution of non-coordinating solvent (CDCl3) was determined by means of variable temperature 1H, 13C, 19F NMR spectroscopy and IR spectroscopy.  相似文献   
96.
D 4 ‐symmetric chiral hydrogen‐bonded cyclotetramers (see the structure in the picture) are present in the self‐assembled achiral title compound in the solid state. The unilayered network set up from the chiral “square” blocks is achiral as a consequence of the crystal symmetry.  相似文献   
97.
Study of carbon black obtained by pyrolysis of waste scrap tyres   总被引:1,自引:0,他引:1  
Waste scrap tyres were thermally decomposed under various conditions. Decompositions were followed by the TGA method. Specific heating regimes were tested to obtain optimal structural properties of resulting pyrolytic carbon black produced by pyrolysis of scrap tyres and the process was characterized in temperature interval from 380 to 1,200 °C and heating rate 10, 20 and 50 °C min?1 under nitrogen atmosphere. The original scrap tyres and pyrolytic carbon black were characterized by Raman and Fourier transform infrared spectroscopy methods. Textural properties were also determined. Effect of temperature and heating rate on process of pyrolysis of scrap tyres was observed. Shifting of temperature of maximum pyrolysis rate to lower value and spreading of DTG peak is caused by increasing heating rate. Temperature 570 °C was sufficient for total scrap tyres pyrolysis. Graphitic and disordered structure was distinguished in the formed carbon black by Raman spectroscopy. With increasing temperature, heating rate and weight loss, the amount of the graphitic structure was reduced at the expense of disordered structure. Destruction of nonporous scrap tyres and formation of porous structure took place at higher temperature. Porous carbon black is formed above 380 °C, specific surface area increased up to 88 m2 g?1 .  相似文献   
98.
Amide coupling of (Sp)‐2‐(diphenylphosphanyl)ferrocene‐1‐carboxylic acid with appropriate terminal amines mediated by 1‐hydroxybenzotriazole and a carbodiimide affords multi‐donor amides terminally functionalized with planar‐chiral (Sp)‐2‐(diphenylphosphanyl)ferrocen‐1‐yl moieties in good to excellent yields. Palladium catalysts based on these ligands efficiently promote asymmetric allylic alkylation of 1,3‐diphenylallyl acetate with in situ generated dimethyl malonate anion to give the C‐alkylated product with ees up to 93% at room temperature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
99.
Bioactive copper complexes with oligosaccharides, pullulan or dextran, are the objective of the present study, because of their possible biomedical applications. The alkaline and acid hydrolysis of the Cu(II) complexes with reduced low-molar pullulan or dextran were carried out by conductometric method. The influence of ligand constitutions on the stability of the complexes was examined on the basis of ligand property. The complexes degradation during alkaline and acid hydrolysis were carried out in sodium hydroxide and hydrochloric acid solutions of 0.1, 0.5, and 1.0 mol dm−3, at different temperature (25, 40, and 60°C, respectively). According to the obtained results by the conductivity investigation during forced degradation studies, it could be concluded that the Cu(II) complexes show the small pharmaceutical stability to both hydrolysis.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号