首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   54篇
  国内免费   2篇
化学   697篇
晶体学   4篇
力学   24篇
数学   69篇
物理学   66篇
  2023年   11篇
  2022年   21篇
  2021年   37篇
  2020年   32篇
  2019年   24篇
  2018年   27篇
  2017年   21篇
  2016年   46篇
  2015年   40篇
  2014年   48篇
  2013年   64篇
  2012年   74篇
  2011年   71篇
  2010年   40篇
  2009年   32篇
  2008年   54篇
  2007年   32篇
  2006年   44篇
  2005年   39篇
  2004年   30篇
  2003年   22篇
  2002年   16篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   7篇
  1993年   1篇
  1992年   2篇
  1987年   2篇
  1966年   1篇
排序方式: 共有860条查询结果,搜索用时 31 毫秒
761.
The non-isothermal combustion of animal bones was investigated by simultaneous thermogravimetric and differential thermal analysis (TG–DTA), in the temperature range ΔT = 20–650 °C. The full kinetic triplet (A, Ea and f(α)) for the investigated process was established, using different calculation procedures: isoconversional (model-free) and the Kissinger's methods. The non-isothermal process occured through three reaction stages (I, II and III). Stage I was described by a reaction model, which contains two competing reactions with different values of the apparent activation energy. The autocatalytic two-parameter Šesták–Berggren (SB) model (conversion function f(α) = α0.62(1 − α)3.22), best described the second (II) reaction stage of bone samples. This stage, which corresponds to the degradation process of organic components (mainly collagen), exhibited the autocatalytic branching effect, with increasing complexity. Stage III, attributed to the combustion process of organic components, was best described by an n-th reaction order model with parameter n = 1.5 (f(α) = (1 − α)1.5). The appearance of compensation effect clearly showed the existence of three characteristic branches attributed to the dehydration, degradation and combustion processes, respectively, without noticable changes in mineral phase. The isothermal predictions of bone combustion process, at four different temperatures (Tiso = 200, 300, 400 and 450 °C) were established in this paper. It was concluded that the shapes of the isothermal conversion curves at lower temperatures (200–300 °C) were similar, whereas became more complex with further temperature increase due to organic phase degradation.  相似文献   
762.
763.
Extensive computational investigations along with additional quasielastic neutron scattering data were used to obtain a consistent picture of the extensive fluxionality of hydride and dihydrogen ligands in Fe(H)(2)(H(2))(PEtPh(2))(3) over a wide range of temperatures from 1.5 to 320 K. We were able to identify three different regimes in the dynamical processes based on activation energies obtained from line spectral broadening. The rotational tunneling lines (coherent exchange of the two hydrogens of the H(2) ligand) are broadened with increasing temperature by incoherent exchange up to about 80 K at which point they merge into a quasielastic spectrum from 100 K to about 225 K. The effective activation energies for the two regions are 0.14 and 0.1 kcal mol(-1), respectively. A third dynamical process with a higher activation energy of 0.44 kcal mol(-1) dominates above 225 K, which we attribute to a quantum dynamical exchange of dihydrogen and hydride ligands. Our detailed density functional theory (DFT) structural calculations involving the three functionals (B3LYP, TPSS, and wB97XD) provide a good account of the experimental structure and rotational barriers when only the hydrogen ligands are relaxed. Full relaxation of the "gas-phase" molecule, however, appears to occur to a greater degree than what is possible in the crystal structure. The classical dihydrogen-hydride exchange path involves a cis-dihydrogen and tetrahydride structure with energies of 6.49 and 7.38 kcal mol(-1), respectively. Experimental observation of this process with much lower energies would seem to suggest involvement of translational tunneling in addition to the rotational tunneling. Dynamics of this type may be presumed to be important in hydrogen spillover from metal particles, and therefore need to be elucidated in an effort to utilize this phenomenon.  相似文献   
764.
Trans-2-nonenal is an aldehyde contributing to an unpleasant off-flavor and odor of rancid butter in stored beer. The automated solid-phase microextraction technique (SPME) coupled with gas chromatography (GC) and solid-phase dynamic extraction (SPDE) coupled with gas chromatography were optimized and introduced to determine trans-2-nonenal in barley, malt and beer. Five types of SPME fibers coated with different stationary phases (100 μm PDMS, 65 μm PDMS/DVB, 85 μm CAR/PDMS, 50/30 μm DVB/CAR/PDMS, 85 μm PA) and two needles (PDMS, PDMS/AC) were compared and tested for their efficiencies in the headspace (HS) SPME and SPDE determination of trans-2-nonenal in barley, malt and beer. The highest extraction efficiency of HS-SPME was achieved with the PDMS/DVB fiber, and addition of 1.5 g of NaCl, extraction time was 20 min at 60 °C. The highest extraction efficiency of HS-SPDE was obtained with the PDMS needle, 15 extraction strokes at 60 °C and addition of 1.5 g of NaCl. Trans-2-nonenal was identified with the method of HS-SPME coupled gas chromatography-mass spectrometry (GC–MS); the samples were analyzed using the HS-SPME-GC-coupled gas chromatography-flame ionization detector (GC-FID) technique.  相似文献   
765.
Water exchange on a molecular, purely inorganic cobalt-based water oxidation catalyst, [Co(4)(II)(H(2)O)(2)(α-P(1)W(9)O(34))(2)](10-) (1), in the catalytically relevant pH region (pH 6-10) is studied using (17)O-NMR spectroscopy and ultrahigh-resolution electrospray ionization mass spectrometry. The results are compared with those of the inactive [Co(II)(H(2)O)(1)Si(1)W(11)O(39)](6-) (2), which is stable in the same pH region. The results obtained provide mechanistic details of the elementary reaction step related to the water oxidation on homogeneous metal oxide catalysts under catalytically relevant conditions. It is shown that the structural integrity of 1 and 2 is maintained, no deprotonation of the aqua ligands on the Co(II) centers occurs, and the water exchange does not undergo any mechanistic changeover at the catalytic pH conditions. We have demonstrated that the water exchange process is influenced by the cluster environment surrounding the water binding sites and is fast enough to not be rate-limiting for the water oxidation catalysis.  相似文献   
766.
Apples are the most frequently consumed fruit and about 90 % of apple production is stored. Fatty acids and lipids are important constituents of plant cells. Disturbances in the lipid composition of fruit may lead to various stress processes, resulting in some storage disorders. This work is focused on an analysis of surface lipids of different varieties of apples stored in a normal atmosphere and a modified atmosphere with ultra-low oxygen content, for 4 months and 6 months. The major fatty acids in apple surface layers are palmitic acid, stearic acid, linoleic acid, and oleic acid. During the 6-months storage period, a variety-specific decrease in the total fatty acids content and an increase in saturation degree was observed in all the varieties tested, when compared with the 4-months storage. The greatest differences in saturation degree were observed in the Golden Delicious variety, in which the highest content of unsaturated fatty acids was also found. Microbial contamination of apple surfaces increased gradually over the storage process. Higher fungi levels were found in apples stored in the regular atmosphere than in the modified atmosphere, which can be attributed to changes observed in the total lipid content and saturation degree of the surface fatty acids and also to the sensitivity of microorganisms to the oxygen content in the storage room.  相似文献   
767.
We have developed a supramolecular nanoassembly capable of inducing remarkable levels of cancer cell mortality through a bimodal action based on the simultaneous photogeneration of nitric oxide (NO) and singlet oxygen ((1)O(2)). This was achieved through the appropriate incorporation of an anionic porphyrin (as (1)O(2) photosensitizer) and of a tailored NO photodonor in different compartments of biocompatible nanoparticles based on cationic amphiphilic cyclodextrins. The combination of steady-state and time-resolved spectroscopic techniques showed the absence of significant intra- and interchromophoric interaction between the two photoactive centers embedded in the nanoparticles, with consequent preservation of their photodynamic properties. Photodelivery of NO and (1)O(2) from the nanoassembly on visible light excitation was unambiguously demonstrated by direct and real-time monitoring of these transient species through amperometric and time-resolved infrared luminescence measurements, respectively. The typical red fluorescence of the porphyrin units was essentially unaffected in the bichromophoric nanoassembly, allowing its localization in living cells. The convergence of the dual therapeutic action and the imaging capacities in one single structure makes this supramolecular architecture an appealing, multifunctional candidate for applications in biomedical research.  相似文献   
768.
Herein we report the design, preparation, and properties of a supramolecular system based on a tailored nitric oxide (NO) photodonor and a rhodamine‐labeled β‐cyclodextrin conjugate. The combination of spectroscopic and photochemical experiments shows the absence of significant interchromophoric interactions between the host and the guest in the excited states. As a result, the complex is able to release NO under the exclusive control of visible light, as unambiguously demonstrated by direct detection of this transient species through an amperometric technique, and exhibits the typical red fluorescence of the rhodamine appendage. The supramolecular complex effectively internalizes in HeLa cancer cells as proven by fluorescence microscopy, shows a satisfactory biocompatibility in the dark, and induces about 50 % of cell mortality upon irradiation with visible light. The convergence of all these properties in one single complex makes the present host–guest ensemble an appealing candidate for further delevopment of photoactivatable nanoscaled systems addressed to photostimulated NO‐based therapy.  相似文献   
769.
An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt‐UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 µmol L?1 with a detection limit of 40.5 nmol L?1. The repeatability of current responses for injections of 5 µmol L?1 NE was evaluated to be 4.0 % (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt‐UMEAs.  相似文献   
770.
A series of N,N’-disubstituted 3,4-ethylenedioxythiophene-2,5-dicarboxamides was synthesised by amide bond formation between 3,4-ethylenedioxythiophene-2,5-dicarbonyl chloride and corresponding primary amines, where the size and the nature of the substituent were varied. The crystal structures of prepared compounds were determined by X-ray structure analysis. Mechanism and reaction rates of interconversion between conformational isomers were obtained by DFT calculations. All studied compounds reveal axial chirality with molecular symmetry C 2. Amide bond isomerisation and twisting of the dioxane ring in studied compounds results in the formation of series of conformers of which the s-trans/s-trans conformer is energetically most favourable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号