We propose a source of multimode squeezed light that can be used for superresolving microscopy. This source is an optical parametric amplifier with a properly chosen diaphragm on its output and a Fourier lens. We demonstrate that such an arrangement produces squeezed prolate spheroidal waves that are the eigenmodes of the optical imaging scheme used in microscopy and discuss the conditions of the degree of squeezing and of the number of spatial modes in illuminating light. 相似文献
Using powerful synchrotron X-ray radiation of the beamline “Belok” operated by the National Research Center “Kurchatov Institute,” we perform X-ray diffraction (XRD) study of an intact, virgin (not subjected to any external mechanical loads) particle isolated from reactor powder of ultrahigh molecular weight polyethylene. Along with the peaks originating from the orthorhombic phase, we detect the peaks characteristic of the monoclinic phase that is stable only under mechanical stress, suggesting that the mechanical stress that leads to the formation of the monoclinic phase and persists at room temperature develops during the polymer synthesis. The monoclinic phase gradually disappears when the particle is heated stepwise in increments of 5 K, and its peaks become undetectable when the temperature reaches 340 K. We contrast the results obtained for the phase composition of the virgin particle to those for a tablet prepared by compaction of the same reactor powder at room temperature. XRD analyses of the tablet were performed on D2 Phaser (Bruker) instrument. The monoclinic phase that originates during the polymer synthesis and the one that forms in the tablet during compaction have different parameters. We discuss the mechanisms by which these two different monoclinic phases originate during the processes involved.
Structural, magnetic and magnetostrictive properties of Tb0.4Nd0.6(Fe0.8Co0.2)x (1.50 ≤ x ≤ 1.90) alloys have been investigated by means of X-ray diffraction (XRD), a vibrating sample magnetometer and a standard strain technique. XRD analysis shows the presence of single Laves phase with a cubic MgCu2-type structure for the high Nd content alloy around the composition of x = 1.80, which tends to be formed by curing at relatively low annealing temperature. The easy direction of magnetization at room temperature is observed toward <111> axis, accompanied by a rhombohedral distortion with a large spontaneous magnetostriction λ111. An optimized effect on the linear anisotropic magnetostriction, 360 ppm at 3 kOe, was observed for the high Nd content Tb0.4Nd0.6(Fe0.8Co0.2)1.80 alloy, which can be attributed to its single Laves phase, the large λ111 (~1,520 ppm) of the MgCu2-type (Tb,Nd)(Fe,Co)2 phase and the good soft magnetic behaviors. 相似文献
The present study provides the theory base for designing flat-field Schmidt optical systems, based on the wavefront aberration of Petzval field curvature, a mathematic model of the Petzval radius is setting up. The radius of Petzval image surface is not equal to the focal length of the primary mirror or the focal length of the system. An aberration balancing method for flat-field Schmidt optical systems design is proposed: did not change parameters of the corrector, through adjusting the distance between the plate and the mirror to realize aberration equilibrium. The total physical track is more compact than equilibrium before. 相似文献
Formation of spontaneous polarization in one-dimensional (1D) structures is a key phenomenon that reveals collective behaviors in systems of reduced dimensions, but has remained unsolved for decades. Here we report ab initio studies on finite-temperature structural properties of infinite-length nanowires of Pb(Zr0.5Ti0.5)O3 solid solution. Whereas existing studies have ruled out the possibility of phase transition in 1D chains, our atomistic simulations demonstrate a different conclusion, characterized by the occurrence of a ferroelectric polarization and critical behaviors of dielectric and piezoelectric responses. The difference is accounted for by the use of depolarizing effects associated with finite thickness of wires. Our results suggest no fundamental constraint that limits the use of ferroelectric nanowires and nanotubes arising from the absence of spontaneous ordering. 相似文献
The semiconductor CdSeS quantum dots (QDs) embedded in glass are analysed by
means of absorption spectra, photoluminescence (PL) spectra and
photoluminescence excitation (PLE) spectra. The peaks of absorption spectra
shift to lower energies with the size of QD increasing, which obviously
shows a quantum-size effect. Using the PLE spectra, the physical origin of
the lowest absorption peak is analysed. In PLE spectra, the lowest
absorption peak can be deconvoluted into two peaks that stem from the
transitions of 1S3/2--1Se and 2S3/2--1Se respectively.
The measured energy difference between the two peaks is found to decrease
with the size of QD increasing, which agrees well with the theoretical
calculation for the two transitions. The luminescence peak of defect states
is also analysed by PLE spectra. Two transitions are present in the PLE,
which indicates that the transitions of 1S3/2--1Se and 2S3/2--1Se are responsible for the defect states luminescence. 相似文献
We theoretically propose and experimentally demonstrate the design of a novel one-dimensional ringlike macroscopic optical circuit element. The similarity between morphologies of an optical planar waveguide and a whispering-gallery axially symmetric solid-state resonator is used. 相似文献