首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   3篇
化学   129篇
数学   15篇
物理学   37篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2014年   3篇
  2013年   5篇
  2012年   12篇
  2011年   15篇
  2010年   5篇
  2009年   6篇
  2008年   16篇
  2007年   17篇
  2006年   16篇
  2005年   14篇
  2004年   18篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
排序方式: 共有181条查询结果,搜索用时 12 毫秒
51.
The speciation in the mixed Th(IV)-Fe(III) system has been studied in aqueous solution in the pH range of 2.0-4.8. In the individual systems iron(III) and thorium(IV) hydrolyze easily and hydrolysis products precipitate at approximately pH ≥ 2.0 and 4.0, respectively, at the metal concentrations used in this study, 0.02-0.05 mol dm(-3). In the mixed Th(IV)-Fe(III) system precipitation of ferrihydrite takes place after months of storage at low pH values, 2.0 (six-line ferrihydrite) and 2.3 (two-line ferrihydrite), as identified by X-ray powder diffraction. In the pH range 2.9-4.5 no precipitation was observed after 24 months. Two thorium(IV)-iron(III) solutions with pH = 2.9, C(Th) = 0.02 and 0.05 mol dm(-3) and C(Fe) = 0.02 mol dm(-3), were studied by extended X-ray absorption fine structure, EXAFS, using the Fe K and Th L(3) edges, and a third solution with pH = 2.9 and C(Th) = C(Fe) = 0.40 mol dm(-3) by large angle X-ray scattering, LAXS, to determine the structure of the predominating species. A heteronuclear hydrolysis complex with the composition [Th(2)Fe(2)(μ(2)-OH)(8)(H(2)O)(12)](6+) is proposed to form in solution, with Th···Th, Th···Fe and Fe···Fe distances of 3.94(2) and 3.96(2), 3.41(3) and 3.43(2), 3.04(2) and 3.02(4) ?, as determined by EXAFS and LAXS, respectively.  相似文献   
52.
The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ? (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) ?, the Tl-O bond distance is 2.282(6) ?, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) ?, respectively. Geometry optimizations on the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 ? above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system.  相似文献   
53.
Herein, we report on the use a biohybrid catalyst consisting of palladium nanoparticles immobilized on cross-linked enzyme aggregates of lipase B of Candida antarctica (CalB CLEA) for the dynamic kinetic resolution (DKR) of benzylic amines. A set of amines were demonstrated to undergo an efficient DKR and the recyclability of the catalysts was studied. Extensive efforts to further elucidate the structure of the catalyst are presented.  相似文献   
54.
A general problem when analysing NMR spectra that reflect variations in the environment of target molecules is that different resonances are affected to various extents. Often a few resonances that display the largest frequency changes are selected as probes to reflect the examined variation, especially in the case, where the NMR spectra contain numerous resonances. Such a selection is dependent on more or less intuitive judgements and relying on the observed spectral variation being primarily caused by changes in the NMR sample. Second, recording changes observed for a few (albeit significant) resonances is inevitably accompanied by not using all available information in the analysis. Likewise, the commonly used chemical shift mapping (CSM) [Biochemistry 39 (2000) 26, Biochemistry 39 (2000) 12595] constitutes a loss of information since the total variation in the data is not retained in the projection into this single variable. Here, we describe a method for subjecting 2D NMR time-domain data to multivariate analysis and illustrate it with an analysis of multiple NMR experiments recorded at various folding conditions for the protein MerP. The calculated principal components provide an unbiased model of variations in the NMR spectra and they can consequently be processed as NMR data, and all the changes as reflected in the principal components are thereby made available for visual inspection in one single NMR spectrum. This approach is much less laborious than consideration of large numbers of individual spectra, and it greatly increases the interpretative power of the analysis.  相似文献   
55.
The Sciff base derived from glycine ethyl ester and p-chlorobenzaldehyde can be alkylated by the ion-pair extraction method as well as under catalytic liquid-liquid or solid-liquid phase-transfer conditions. This imine is compared with the corresponding benzophenone Schiff base.  相似文献   
56.
The solvation of the mercury(II) ion in solvents with different solvation properties, water, dimethylsulfoxide, N,N-dimethylthioformamide, and liquid ammonia, has been studied by means of (199)Hg NMR. The (199)Hg chemical shift shows a pronounced dependence on the coordination number of the mercury(II) ion in the solvates resulting in a difference of over 1200 ppm between basically tetrahedral and octahedral complexes. The chemical shifts can furthermore be associated with electron-pair donor properties of the solvents. The spin-lattice relaxation times of the (199)Hg nucleus in the solvates have been measured at different applied magnetic fields, concentrations, temperatures, and isotope substitutions. Possible mechanisms for the (199)Hg relaxation were proposed and the chemical shielding anisotropy in the solvates has been estimated. The (199)Hg relaxation rates and the anisotropy are correlated with the structure of the solvate complexes in solution obtained from recent LAXS and EXAFS studies.  相似文献   
57.
A number of polycrystalline copper(I) O,O'-dialkyldithiophosphate cluster compounds with Cu4, Cu6, and Cu8 cores were synthesized and characterized by using extended X-ray absorption fine-structure (EXAFS) spectroscopy. The structural relationship of these compounds is discussed. The polycrystalline copper(I) O,O'-diisobutyldithiophosphate cluster compounds, [Cu8{S2P(OiBu)2}6(S)] and [Cu6{S2P(OiBu)2}6], were also characterized by using 31P CP/MAS NMR (CP = cross polarization, MAS = magic-angle spinning) and static 65Cu NMR spectroscopies (at different magnetic fields) and powder X-ray diffraction (XRD) analysis. Comparative analyses of the 31P chemical-shift tensor, and the 65Cu chemical shift and quadrupolar-splitting parameters, estimated from the experimental NMR spectra of the polycrystalline copper(I) cluster compounds, are presented. The adsorption mechanism of the potassium O,O'-diisobutyldithiophosphate collector, K[S2P(OiBu)2], at the surface of synthetic chalcocite (Cu2S) was studied by means of solid-state 31P CP/MAS NMR spectroscopy and scanning electron microscopy (SEM). 31P NMR resonance lines from collector-treated chalcocite surfaces were assigned to a mixture of [Cu8{S2P(OiBu)2}6(S)] and [Cu6{S2P(OiBu)2}6] compounds.  相似文献   
58.
The reduction potentials of the AnO(2)(H(2)O)(5)(2+)/AnO(2)(H(2)O)(5)(+) couple (An = U, Np, Pu, and Am) and Fe(H(2)O)(6)(3+) to Fe(H(2)O)(6)(2+) in aqueous solution were calculated at MP2, CASPT2, and CCSD(T) levels of theory. Spin-orbit effects for all species were estimated at the CASSCF level. Solvation of the hydrated metal cations was modeled both by polarizable conductor model (PCM) calculation and by solvating the solutes with over one thousand TIP3P water molecules in the QM/MM framework. The redox reaction energy calculated by QM/MM method agreed well with the PCM method after corrections using the classical Born formula for the contribution from the rest of the solvation sphere and correction for dynamic response of solvent polarization in the MM region. Calculated reduction potentials inclusive of spin-orbit effect, zero-point energy, thermal corrections, entropy effect, and PCM solvation energy were found to be comparable with experimental data. The difference between CASPT2 calculated and experimental reduction energies were less than 35 kJ/mol in all cases, which ensures that CASPT2 (and CCSD(T)) calculations provide reasonable estimates of the thermochemistry of these reactions.  相似文献   
59.
Liquid ammonia, trialkyl phosphites, and especially trialkylphosphines, are very powerful electron-pair donor solvents with soft bonding character. The solvent molecules act as strongly coordinating ligands towards mercury(ii), interacting strongly enough to displace halide ligands. In liquid ammonia mercury(ii) chloride solutions separate into two liquid phases; the upper contains tetraamminemercury(ii) complexes, [Hg(NH(3))(4)](2+), and chloride ions in low concentration, while the lower is a dense highly concentrated solution of [Hg(NH(3))(4)](2+) entities, ca. 1.4 mol dm(-3), probably ion-paired by hydrogen bonds to the chloride ions. Mercury(ii) bromide also dissociates to ionic complexes in liquid ammonia and forms a homogeneous solution for which (199)Hg NMR indicates weak bromide association with mercury(ii). When dissolving mercury(ii) iodide in liquid ammonia and triethyl phosphite solvated molecular complexes form in the solutions. The Raman nu(I-Hg-I) symmetric stretching frequency is 132 cm(-1) for the pseudo-tetrahedral [HgI(2)(NH(3))(2)] complex formed in liquid ammonia, corresponding to D(S) = 56 on the donor strength scale. For the Hg(ClO(4))(2)/NH(4)I system in liquid ammonia a (199)Hg NMR study showed [HgI(4)](2-) to be the dominating mercury(ii) complex for mole ratios n(I(-)) : n(Hg(2+)) > or = 6. A large angle X-ray scattering (LAXS) study of mercury(ii) iodide in triethyl phosphite solution showed a [HgI(2)(P(OC(4)H(9))(3))(2)] complex with the Hg-I and Hg-P bond distances 2.750(3) and 2.457(4) A, respectively, in near tetrahedral configuration. Trialkylphosphines generally form very strong bonds to mercury(ii), dissociating all mercury(ii) halides. Mercury(ii) chloride and bromide form solid solvated mercury(ii) halide salts when treated with tri-n-butylphosphine, because of the low permittivity of the solvent. A LAXS study of a melt of mercury(ii) iodide in tri-n-butylphosphine at 330 K resulted in the Hg-I and Hg-P distances 2.851(3) and 2.468(4) A, respectively. The absence of a distinct I-I distance indicates flexible coordination geometry with weak and non-directional mercury(ii) iodide association within the tri-n-butylphosphine solvated complex.  相似文献   
60.
The mechanism for the photochemically induced isotope-exchange reaction U(17/18)O2(2+)(aq) + H2(16)O <==> U(16)O2(2+)(aq) + H2(17/18)O has been studied using quantum-chemical methods. There is a dense manifold of states between 22,000 and 54,000 cm(-1) that results from excitations from the sigma(u) and pi(u) bonding orbitals in the (1)Sigma(g)(+) ground state to the nonbonding f(delta) and f(phi) orbitals localized on uranium. On the basis of investigations of the reaction profile in the (1)Sigma(g)(+) ground state and the excited states (3)Delta(g) (the lowest triplet state) and (3)Gamma(g) (one of the several higher triplet states), the latter two of which have the electron configurations sigma(u)f(delta) and pi(u)f(phi), respectively, we suggest that the isotope exchange takes place in one of the higher triplet states, of which the (3)Gamma(g) state was used as a representative. The geometries of the luminescent (3)Delta(g) state, the lowest in the sigma(u)f(delta,phi) manifold (the "sigma" states), and the (1)Sigma(g)(+) ground state are very similar, except that the bond distances are slightly longer in the former. This is presumably a result of transfer of a bonding electron to a nonbonding f orbital, which makes the excited state in some respects similar to uranyl(V). As is the case for all of the states of the pi(u)f(delta,phi) manifold (the "pi" states), the geometry of the (3)Gamma(g) state is very different from that of the (3)Delta(g) "sigma" state and has nonequivalent U-O(yl) distances of 1.982 and 1.763 A; in the (3)Gamma(g) state, the yl-exchange takes place by transfer of a proton or hydrogen from water to the more distant yl-oxygen. The activation barriers for proton/hydrogen transfer in the ground state and the (3)Delta(g) and (3)Gamma(g) states are 186, 219, and 84 kJ/mol, respectively. The relaxation energy for the (3)Gamma(g) state in the solvent after photoexcitation is -86 kJ/mol, indicating that the energy barrier can be overcome; the "pi" states are therefore the most probable route for proton/hydrogen transfer. They can be populated after UV irradiation but are too high in energy (approximately 36,000-40,000 cm(-1)) to be reached by a single-photon absorption at 436 nm (22,900 cm(-1)), where experimental data have demonstrated that exchange can take place. Okuyama et al. [Bull. Res. Lab. Nucl. React. (Tokyo Inst. Technol.) 1978, 3, 39-50] have demonstrated that an intermediate is formed when an acidic solution of UO2(2+)(aq) is flash-photolyzed in the UV range. The absorption spectrum of this short-lived intermediate (which has a maximum at 560 nm) indicates that this species arises from 436 nm excitation of the luminescent (3)Delta(g) state (which has a lifetime of approximately 2 x 10(-6) s); this is sufficient to reach the reactive "pi" states. It has been speculated that the primary reaction in acidic solutions of UO2(2+)(aq) is the formation of a uranyl(V) species; our results indicate that the structure in the luminescent state has some similarity to that of UO2(+) but that the reactive species in the "pi" states is a cation radical with a distinctly different structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号