首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79035篇
  免费   362篇
  国内免费   380篇
化学   24533篇
晶体学   802篇
力学   6784篇
数学   32187篇
物理学   15471篇
  2021年   33篇
  2020年   36篇
  2019年   45篇
  2018年   10460篇
  2017年   10278篇
  2016年   6104篇
  2015年   884篇
  2014年   347篇
  2013年   388篇
  2012年   3843篇
  2011年   10568篇
  2010年   5696篇
  2009年   6096篇
  2008年   6625篇
  2007年   8798篇
  2006年   241篇
  2005年   1333篇
  2004年   1538篇
  2003年   1985篇
  2002年   1024篇
  2001年   253篇
  2000年   305篇
  1999年   169篇
  1998年   199篇
  1997年   155篇
  1996年   221篇
  1995年   131篇
  1994年   86篇
  1993年   111篇
  1992年   62篇
  1991年   73篇
  1990年   54篇
  1989年   67篇
  1988年   69篇
  1987年   64篇
  1986年   69篇
  1985年   61篇
  1984年   54篇
  1983年   41篇
  1982年   46篇
  1981年   52篇
  1980年   56篇
  1979年   52篇
  1978年   40篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor γ = 1.5 (i.e. v/c = 0.741), average waveguide height y 0 = 1.445 cm, axial corrugation period z 0 = 1.67 cm, and corrugation amplitude ε = 0.225 cm. The plasma density is varied from zero to 2 ×1012 cm − 3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GHz at 2 ×1012 cm − 3 plasma density) relative to the vacuum cut-off frequency (5 GHz) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.  相似文献   
992.
A photo-induced radical pair of FADH· and Y8· and in BLUF protein SyPixD was studied by pulsed electron paramagnetic resonance (EPR) spectroscopy. Blue light illumination at 150 K for 30 min followed by cooling to 50 K during illumination induced the stable radical pair. The EPR signal has been characterized by a Pake doublet signal with complete S = 1 spin state. The radical pair was utilized as a probe to analyze the oligomer of SyPixD. The relative arrangement of PixD proteins in the complex was investigated by pulsed electron–electron double resonance (PELDOR) with the orientation selection. Based on the decameric structure in the crystal, the possible structure for the PELDOR results was discussed.  相似文献   
993.
The transmission spectra of polarized light waves in a photonic crystal/liquid crystal (PC/LC) cell placed between crossed polarizers and controlled by an electric or magnetic field have been studied experimentally and theoretically. Electro- and magneto-optical switching based on the interference of polarized defect modes has been demonstrated. The transmission spectra of the PC/LC cell have been calculated as a function of the voltage applied to the LC layer and the magnetic field strength. The results of the calculations agree well with the experimental data.  相似文献   
994.
The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner’s representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation.  相似文献   
995.
The effect of resonant fluorescent enhancement from a photonic crystal surface upon the fluorescent photobleaching rate of Cyanine-5 labeled protein has been investigated. We show that the enhanced excitation mechanism for photonic crystal enhanced fluorescence, in which the device surface resonantly couples light from an excitation laser, accelerates photobleaching in proportion to the coupling efficiency of the laser to the photonic crystal. We also show that the enhanced extraction mechanism, in which the photonic crystal directs emitted photons approximately normal to the surface, does not play a role in the rate of photobleaching. We show that the photobleaching rate of dye molecules on the photonic crystal surface is accelerated by 30x compared to an ordinary glass surface, but substantial signal gain is still evident, even after extended periods of continuous illumination at the resonant condition.  相似文献   
996.
In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.  相似文献   
997.
Warm-intermediate inflationary universe models in the context of braneworld cosmologies are studied. This study is done in the weak and strong dissipative regimes. We find that the scalar potentials and dissipation coefficients in terms of the scalar field evolve as type-power-law and powers of logarithms, respectively. General conditions required for these models to be realizable are derived and discussed. We also study the scalar and tensor perturbations for each regime. We use recent astronomical observations to constrain the parameters appearing in the braneworld models.  相似文献   
998.
The influence of fundamental and second harmonic wavelength on ablation efficiency and nanoparticle properties is studied during picosecond laser ablation of silver, zinc, and magnesium in polymer-doped tetrahydrofuran. Laser ablation in stationary liquid involves simultaneously the fabrication of nanoparticles by ablation of the target material and fragmentation of dispersed nanoparticles by post irradiation. The ratio in which the laser pulse energy contributes to these processes depends on laser wavelength and colloidal properties. For plasmon absorbers (silver), using the second harmonic wavelength leads to a decrease of the nanoparticle productivity over process time along with exponential decrease in particle diameter, while using the fundamental wavelength results in a constant ablation rate and linear decrease in particle diameter. For colloids made of materials without plasmon absorption (zinc, magnesium), laser scattering is the colloidal property that limits nanoparticle productivity by Mie-scattering of dispersed nanoparticle clusters.  相似文献   
999.
In this paper we investigate the relation between weak convergence of a sequence \(\left\{ \mu_{n}\right\} \) of probability measures on a Polish space S converging weakly to the probability measure μ and continuous, norm-bounded functions into a Banach space X. We show that, given a norm-bounded continuous function f:SX, it follows that \(\lim_{n\to\infty}\int_{S}f\, d\mu_{n}=\int_{S}f\, d\mu\)—the limit one has for bounded and continuous real (or complex)—valued functions on S. This result is then applied to the stability theory of Feynman’s operational calculus where it is shown that the theory can be significantly improved over previous results.  相似文献   
1000.
The photo-current of n-ZnO/p-Si heterojunction photodiodes was improved by embedding Ag nanoparticles in the interface (ZnO/nano-PAg/p-Si), and the ratio between photo- and dark-current increased by about three orders more than that of a n-ZnO/p-Si specimen. The improvement in the photo-current resulted from the light scattering of embedded Ag nanoparticles. The IV curve of n-ZnO/p-Si degraded after thermal treatment (A-ZnO/p-Si) because the silicon robbed the oxygen from ZnO to form amorphous silicon dioxide and left an oxygen vacancy. Notably, the properties of ZnO/nano-PAg/p-Si were better in the time-dependent photoresponse under 10 V bias. Ag nanoparticles (15–20 nm) scattered the UV light randomly and increased the probability for the absorption of ZnO to enhance the properties of the photodiode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号