首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
化学   103篇
晶体学   4篇
力学   5篇
数学   19篇
物理学   9篇
  2023年   3篇
  2022年   8篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   14篇
  2015年   6篇
  2014年   5篇
  2013年   18篇
  2012年   10篇
  2011年   17篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
  1966年   1篇
  1959年   3篇
  1958年   2篇
  1957年   1篇
  1946年   1篇
  1945年   1篇
  1913年   1篇
  1910年   1篇
  1909年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
41.
In our previous study [A.K. Sahu, V.C. Srivastava, I.D. Mall, D.H. Latye, Sep. Sci. Technol. 43 (5) (2008) 1239], commercial grade activated carbon (ACC) was used for adsorptive removal of furfural from aqueous solution using batch studies. In the present study, continuous fixed-bed adsorption was carried out in ACC packed bed for the removal of furfural from aqueous solution. The effects of important factors namely bed height (Z = 15–60 cm), influent concentration of furfural (Co = 50–200 mg/l), the flow rate (Q = 0.02–0.04 l/min) and column diameter (D = 2–4 cm) were studied. Capacity of the bed to adsorb furfural was found to increase with an increase in the value of Z, Co and D; and with decrease in the value of Q. Adams–Bohart, Bed-Depth Service-Time, Thomas, Yoon–Nelson, Clark and Wolborska models were applied to the experimental data for the prediction of the breakthrough point, and to determine the characteristic parameters of the column. Error analysis showed that the Yoon–Nelson model best described the experimental breakthrough curve, while Wolborska model showed good prediction of breakthrough curve for the relative concentration region up to 0.5.  相似文献   
42.
Extensive computations were performed on aqueous clusters of monovalent sodium cation [Na+(H2O) n ; (n = 1–20)] using MP2/cc-pVTZ and density functional theory. The structure, energy, and coordination number (CN) preference of a large number of competing conformations of different complexes have been explored. For complexes up to n = 12, the CN 4 is most preferred while 5, 6 CNs are favored in case of larger complexes containing up to 20 water molecules. These results are in very good agreement with experimental observations. The strength of hydrogen bonding among the waters coordinated to the Na+ ion is found to play a major role in the stability of the complexes. The varying preferences for CN of Na+ ion were explored by screening two important databases: Protein Databank and Cambridge Structural Database. A linear correlation is observed between the M (Metal)–O distance and the charge on metal ion in complex with the increase in CN of metal ion.  相似文献   
43.
44.
45.
The relative thermal stability of copolymers of 2-hydroxyethyl methacrylate-ethyl methacrylate (HEMA-EMA) and HEMA-n-butyl methacrylate (HEMA-BMA) was investigated by thermogravimetry in an air/nitrogen atmosphere. The effect of molecular weight on thermal degradation was evaluated by taking five fractions of HEMA-EMA and four of HEMA-BMA copolymers. The enthalpic changes associated with the endothermic transition were evaluated by differential scanning calorimetry. The structural changes taking place in these copolymers during thermal degradation in air at 200°C were investigated by IR.  相似文献   
46.
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.  相似文献   
47.
Spinel oxides with the composition of AIIBIII2O4 (A and B are metal ions) represent an important class of anode material for water splitting to replace the currently used noble-metal catalysts. Although spinel electrocatalysts have widely been investigated for electrochemical water oxidation, the role of octahedral and tetrahedral sites influencing catalytic performance has been a topic of discussion for a long time and still under debate. Lately, this issue has been addressed by substituting redox-inert cation to the tetrahedral sites of cobalt spinels and comparing the electrochemical activity between them. However, rapid surface structural transformation of the catalysts under operating electrochemical conditions makes it difficult to infer the exact contribution of tetrahedral and octahedral sites for water oxidation. Herein, for the first time, we utilize the oxidant-driven water oxidation approach to reveal the responsible active sites using two spinel-type nanostructures, ZnIICo2IIIO4 and CoIICo2IIIO4 (Co3O4), synthesized by using a single-source precursor approach. Strikingly, a superior O2 production rate (0.98 mmolO2 molCo?1 s?1) following first-order reaction kinetics was achieved for ZnCo2O4 in the presence of CeIV as sacrificial electron acceptor compared to Co3O4 spinel (0.29 mmolO2 molCo?1 s?1). The structural and morphological stability of the ZnCo2O4 and Co3O4 post water oxidation catalysis confirms that the catalytic activity is strictly controlled by the geometry and electronic structure of the active site of the spinel structure. The higher performance of ZnCo2O4 over Co3O4 further indicates that the presence of CoII is not essential for catalytic water oxidation. The presence of redox inert ZnII at the tetrahedral site of ZnCo2O4 can facilitate the stabilization of a high-valent CoIV intermediate via oxidation of CoIII (situated at the octahedral site), and this intermediate can be regarded as the active species for water oxidation catalyst along with structural defects caused by surface Zn leaching.  相似文献   
48.
The most popular bounded-degree derivative network of the hypercube is the butterfly network. The Benes network consists of back-to-back butterflies. There exist a number of topological representations that are used to describe butterfly—like architectures. We identify a new topological representation of butterfly and Benes networks.The minimum metric dimension problem is to find a minimum set of vertices of a graph G(V,E) such that for every pair of vertices u and v of G, there exists a vertex w with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. It is NP-hard in the general sense. We show that it remains NP-hard for bipartite graphs. The algorithmic complexity status of this NP-hard problem is not known for butterfly and Benes networks, which are subclasses of bipartite graphs. By using the proposed new representations, we solve the minimum metric dimension problem for butterfly and Benes networks. The minimum metric dimension problem is important in areas such as robot navigation in space applications.  相似文献   
49.
The present study deals with the use of poly aluminium chloride (PAC) as a coagulant and bagasse fly ash (BFA), which is generated in sugar mills, as an adsorbent for the removal of chemical oxygen demand (COD) and colour of pulp and paper mill effluents. Under optimal conditions of pH 3 and initial PAC dosage of 3 g/l, about 80% COD removal and 90% colour removal were obtained. The optimal conditions for the adsorptive removal of COD and colour with BFA were pH 4 and BFA dosage of 2 g/l. Under these conditions, COD and colour removal were, respectively, 50 and 55%. Adsorptive removal of COD by BFA followed second-order kinetics. Intra-particle diffusion was found to be rate controlling. Freundlich and Langmuir adsorption isotherms were found to fit the equilibrium adsorption data with BFA. Two-stage treatment using PAC (3 g/l) as a coagulant in the first stage and BFA (2 g/l) as an adsorbent in the second stage gave the combined COD and colour removal of nearly 87 and 95%, respectively, for different effluents without any pH adjustment. Two-stage adsorptive treatment using BFA (2 g/l) in both the stages gave a combined COD and colour removal of about 70%. The sludge obtained can be dewatered by centri-clarifiers, dried, briquetted and incinerated to recover its energy content.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号