首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   34篇
  国内免费   3篇
化学   406篇
晶体学   5篇
力学   19篇
数学   46篇
物理学   108篇
  2024年   8篇
  2023年   9篇
  2022年   35篇
  2021年   48篇
  2020年   33篇
  2019年   32篇
  2018年   32篇
  2017年   20篇
  2016年   37篇
  2015年   23篇
  2014年   22篇
  2013年   44篇
  2012年   43篇
  2011年   38篇
  2010年   37篇
  2009年   25篇
  2008年   19篇
  2007年   19篇
  2006年   8篇
  2005年   9篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1982年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有584条查询结果,搜索用时 31 毫秒
81.
Hydrogel‐based drug delivery systems can leverage therapeutically favorable upshots of drug release and found clinical uses. Hydrogels offer temporal and spatial control over the release of different therapeutic agents. Because of their tailor made controllable degradability, physical properties, and ability to prevent the labile drugs from degradation, hydrogels provide platform on which diverse physicochemical interactions with entrapped drugs cause to control drug release. Herein, we report the fabrication of novel vinyltrimethoxy silane (VTMS) cross‐linked chitosan/polyvinyl pyrrolidone hydrogels. Swelling in distilled water in conjunction with different buffer and electrolyte solutions was performed to assess the swellability of hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X‐ray diffraction (XRD) analysis were further conducted to investigate the possible interactions between components, thermal stability, and crystallinity of as‐prepared hybrid hydrogels, respectively. In vitro time‐dependent biodegradability, antimicrobial study, and cytotoxicity were also carried out to evaluate their extensive biocompatibility and cytotoxic behavior. More interestingly, in vitro drug release study allowed for the controlled release of cephradine. Therefore, this facile strategy developed the novel biocompatible and biodegradable hybrid hydrogels, which could significantly expand the scope of these hydrogels in other biomedical applications like scaffolds, skin regeneration, tissue engineering, etc.  相似文献   
82.
The fabrication of nanoparticles has been perused as a topic of critical importance in the present decades. Biosynthesis of nanoparticles employs plants extract instead of harmful chemicals. These plant extracts act as reducing and capping agents which is the most appropriate and eco-friendly method among all the preparative routs. In present study, the magnetite nanoparticles (Fe3O4-NPs) were fabricated using rapid, single step and benign biosynthetic rout by reduction of ferric nitrate nonahydrate solution with Ferocactus echidne aqueous extract containing ascorbic acid as a main reducing and capping agent. The structural and morphological properties of prepared iron oxide nanoparticles were investigated by Powder X-ray diffraction and scanning electron microscopy. The size of the synthesized nanoparticles was approximately 15 ± 2 nm as determined by Scherrer equation. The biosynthetically fabricated nanoparticles were employed as catalyst for pyrolysis of nutshells to produce biofuel. Catalytic pyrolysis of biomass yields biofuel as an alternative source of energy and chemical feed stock. Effect of temperature, heating rate, and amount of catalyst were investigated on conversion percentage and product yields. Aniline point, carbon residue, and cetane number of prepared bio-oil were also determined.  相似文献   
83.
84.
85.
In the present study the cadmium (Cd) was determined in serum samples of psoriatic patients. The severity of psoriasis was evaluated according to criteria based on standard clinical diagnosis using Psoriasis Area Severity Index (PASI) score. In present study, an innovative tunable green solvent system based microextraction (TSS-ME) was applied for the enrichment of Cd in acid digested serum samples prior to determination with flame atomic absorption spectrometry. The hydrophobic complex of Cd-ammonium pyrrolidine thiocarbamate was extracted in a tunable solvent system which was prepared from a polybasic amine (N, N, N′, N′-tetramethyl-1, 4-diaminobutane), decanol and water system. The tunable green solvent system (TSS) which has zero ionic strength was converted to homogeneous monophasic polar hydrophilic phase via exposure to CO2 at different pressure and time duration. Then hydrophobic enriched Cd- ammonium pyrrolidine thiocarbamate was back extracted, using HNO3 (0.1 to 0.5 mol L−1) then the second round of TSS-ME was applied. The acidic aqueous phase enrich with analyte was separated from tunable solvent. The separated TSS was easily reused for up to 10 time for preconcentration purposes without loss of its enrichment character. The smoker and nonsmoker psoriatic patients at PASI >10, have two to three folds higher Cd levels in serum samples than healthy persons.  相似文献   
86.
The ever‐increasing resistance of plant microbes towards fungicides and bactericides has been causing serious threat to plant production in recent years. For the development of an effective antifungal agent, we introduce a novel hydrothermal protocol for synthesis of chitosan iron oxide nanoparticles (CH‐Fe2O3 NPs) using acetate buffer of low pH 5.0 for intermolecular interaction of Fe2O3 NPs and CH. The composite structure and elemental elucidation were carried out by using X‐ray power diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Ultraviolet Visible Absorption Spectroscopy (UV–vis spectroscopy). Additionally, antifungal activity was evaluated both In vitro and In vivo against Rhizopus oryzae which is causing fruit rot disease of strawberry. We compared different concentrations (0.25%, 0.50%, 075% and 1%) of CH‐Fe2O3 NPs and 50% synthetic fungicide (Matalyxal Mancozab) to figure out suitable concentration for application in the field. XRD analysis showed a high crystalline nature of the NPs with average size of 52 nanometer (nm). SEM images revealed spherical shape with size range of 50–70 nm, whereas, TEM also revealed spherical shape, size ranging from 0 nm to 80 nm. EDX and FTIR results revealed presence of CH on surface of Fe2O3 NPs. The band gap measurement showed peak 317–318 nm for bare Fe2O3 NPs and CH‐Fe2O3 NPs respectively. Antifungal activity in both In vitro and In vivo significantly increased with increase in concentration. The overall results revealed high synergetic antifungal potential of organometallic CH‐Fe2O3 NPs against Rhizopus oryzae and suggest the use of CH‐Fe2O3 NPs against other Phyto‐pathological diseases due to biodegradable nature.  相似文献   
87.
88.
This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with a steel-moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis (IDA) are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and IDA. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake (MCE) level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post-event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum inter-story drift demand at MCE level for satisfactory seismic performance, while larger values provide higher collapse capacity for the SMA braced frame.  相似文献   
89.
In the present study, a specific type of reinforcing resin behavior is investigated using various mechanical approaches as well as microscopic techniques such as transmission electron microscopy and atomic force microscopy. Based on these observations, it could be concluded that the reinforcing resin introduces a synergistic effect with carbon black in order to strengthen the system. This is implied since the percolation threshold is significantly reduced and the morphology of the filler aggregates changes toward higher compactness, i.e., an increase of volume-to-size ratio with the addition of resin.  相似文献   
90.
Imtiaz  Haroon  Akhtar  Imran 《Nonlinear dynamics》2020,99(1):479-494
Nonlinear Dynamics - Reduced-order models (ROM) of structurally dominated fluid flows have significant applications in science and engineering, such as design, control, and optimization....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号