首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   6篇
  国内免费   2篇
化学   96篇
晶体学   1篇
力学   3篇
综合类   1篇
数学   9篇
物理学   17篇
  2023年   2篇
  2022年   5篇
  2021年   10篇
  2020年   1篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   2篇
  2013年   11篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   11篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1985年   1篇
  1980年   1篇
  1978年   3篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
91.
The isolation of a new biflavonoid, identified as I-3, II-3, I-5, II-5, I-7, II-7, I-4', II-4'-octahydroxy [I-2', II-2'] biflavone, from the leaves of Garcinia nervosa is reported. The structure was established by chemical and physical means (IR, UV, 1H-NMR, 13C-NMR data).  相似文献   
92.
Aqueous solution of water soluble colloidal MnO2 was prepared by Perez-Benito method. Kinetics of l-methionine oxidation by colloidal MnO2 in perchloric acid (0.93 × 10−4 to 3.72 × 10−4 mol dm−3) has been studied spectrophotometrically. The reaction follows first-order kinetics with respect to [H+]. The first-order kinetics with respect to l-methionine at low concentration shifts to zero order at higher concentration. The effects of [Mn(II)] and [F] on the reaction rate were also determined. Manganese (II) has sigmoidal effect on the rate reaction and act as auto catalyst. The exact dependence on [Mn(II)] cannot be explained due to its oxidation by colloidal MnO2. Methionine sulfoxide was formed as the oxidation product of l-methionine. Ammonia and carbon dioxide have not been identified as the reaction products. The mechanism with the observed kinetics has been proposed and discussed.  相似文献   
93.
Phosphorus species are potent modulators of physicochemical and bioactive properties of peptide compounds. O,O-diorganyl dithiophoshoric acids (DTP) form bioactive salts with nitrogen-containing biomolecules; however, their potential as a peptide modifier is poorly known. We synthesized amphiphilic ammonium salts of O,O-dimenthyl DTP with glutathione, a vital tripeptide with antioxidant, protective and regulatory functions. DTP moiety imparted radical scavenging activity to oxidized glutathione (GSSG), modulated the activity of reduced glutathione (GSH) and profoundly improved adsorption and electrooxidation of both glutathione salts on graphene oxide modified electrode. According to NMR spectroscopy and GC–MS, the dithiophosphates persisted against immediate dissociation in an aqueous solution accompanied by hydrolysis of DTP moiety into phosphoric acid, menthol and hydrogen sulfide as well as in situ thiol-disulfide conversions in peptide moieties due to the oxidation of GSH and reduction of GSSG. The thiol content available in dissolved GSH dithiophosphate was more stable during air oxidation compared with free GSH. GSH and the dithiophosphates, unlike DTP, caused a thiol-dependent reduction of MTS tetrazolium salt. The results for the first time suggest O,O-dimenthyl DTP as a redox modifier for glutathione, which releases hydrogen sulfide and induces biorelevant redox conversions of thiol/disulfide groups.  相似文献   
94.
The surface modification of montmorillonite clay was carried out through ion‐ exchange reaction using p‐phenylenediamine as a modifier. This modified clay was employed to prepare aromatic polyamide/organoclay nanocomposite materials. The dispersion behavior of clay was examined in the polyamide matrix. Polyamide chains were synthesized from 4‐aminophenyl sulfone and isophthaloyl chloride (IPC) in dimethylacetamide. These amide chains were suitably end‐capped with carbonyl chloride end groups to interact chemically with modified montmorillonite clay. The resulting nanocomposite films containing 2–20 wt% of organoclay were characterized by TEM, X‐ray diffraction (XRD), thin‐film tensile testing; thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and water absorption measurements. Mechanical testing revealed that modulus and strength improved up to 6 wt% organoclay loading while elongation and toughness of nanocomposites decreased with the addition of clay content in the matrix. Thermal decomposition temperatures of the nanocomposites were in the range 225–450 °C. These nanocomposites expressed increase in the glass‐transition temperature values relative to pure polyamide describing interfacial interactions among the phases. The percent water uptake of these composites reduced upon the addition of modified layered silicate depicting improved barrier properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
95.
Aromatic polyamide was synthesized via condensation polymerization of 4‐aminophenyl sulfone (APS) with isophthaloyl chloride (IPC) using N,N‐dimethyl acetamide (DMAc) as a solvent under anhydrous conditions. The purified aramid was studied by laser light scattering (LLS) in dimethyl sulfoxide (DMSO), a thermodynamically good solvent at 20°C. Static and dynamic light scattering studies permitted to determine the weight average molecular weight , radius of gyration , second virial coefficient A2, the hydrodynamic radius RH, and the diffusion coefficient D. Light scattering experiments were conducted at five concentrations ranging from 0.27 to 2.5 g/L. LLS measurement is also a very useful technique to study the aggregation or association in a polymer system as long as the large “clusters” are reasonably stable in time. The intensity autocorrelation function obtained on the quasi‐elastically scattered light showed a simple diffusive relaxation mode. The ratio of radius of gyration to the hydrodynamic radius, i.e. ~ 1.3 indicates that the polyamide chain has coil conformation in DMSO at 20°C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
96.
Polymer—clay nanocomposites were synthesized from aromatic polyamide and organoclay using the solution intercalation technique. Polyamide chains were produced through the reaction of 4,4′‐oxydianiline (ODA) and isophthaloyl chloride (IPC) in N, N′‐dimethyl acetamide, using stoichiometry yielding chains with carbonyl chloride end groups. The intercalation of sodium montmorillonite (Na‐MMT) was carried out using p‐phenylene diamine as a swelling agent through an ion exchange reaction. Different concentrations of organoclay were blended with the polyamide solution for complete dispersion of clay throughout the matrix. The resulting composite films were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), mechanical testing, thermogravimetry (TGA), differential scanning calorimetry (DSC) and water absorption measurements. The XRD pattern and morphology of the nanocomposites revealed the formation of exfoliated and intercalated clay platelets in the matrix. The film containing a small amount of clay was semitransparent and had a tensile strength of the order of 70 MPa (relative to the 52 MPa of the pure aramid). Thermal decomposition temperatures were in the range of 300–450°C and the weight of the samples remaining after heating to 900°C was found to be roughly proportional to the clay loading. DSC showed a systematic increase in the glass transition temperature with increase in clay content. Water absorption of the pristine aramid film was rather high (5.7%), which reduced upon loading of organoclay. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
97.
Metallic Zn is one of the most promising anodes, but its practical application has been hindered by dendritic growth and serious interfacial reactions in conventional electrolytes. Herein, ionic liquids are adopted to prepare intrinsically safe electrolytes via combining with TEP or TMP solvents. With this synergy effect, the blends of TEP/TMP with an IL fraction of ≈25 wt% are found to be promising electrolytes, with ionic conductivities comparable to those of standard phosphate-based electrolytes while electrochemical stabilities are considerably improved; over 1000 h at 2.0 mA cm−2 and ≈350 h at 5.0 mA cm−2 with a large areal capacity of 10 mAh cm−2. The use of functionalized IL turns out to be a key factor in enhancing the Zn2+ transport due to the interaction of Zn2+ ions with IL-zincophilic sites resulting in reduced interfacial resistance between the electrodes and electrolyte upon cycling leading to spongy-like highly porous, homogeneous, and dendrite-free zinc as an anode material.  相似文献   
98.
99.

This paper provides a comparative analysis of two different types of nanofluids for Stokes second problem. Additional effects of MHD, porosity and viscous dissipation are also considered. Two types of Newtonian liquids (water and ethylene glycol) are considered as base fluids with suspended nanosized Cu particles. A homogenous model of Newtonian nanofluids over a flat plate is used to describe this phenomenon with Stokes boundary conditions such that the ambient fluid is static and with uniform temperature. The problem is first written in terms of nonlinear partial differential equations with physical conditions; then after non-dimensional analysis, the Laplace transform method is used for its closed-form solution. Exact expressions are determined for the dimensionless temperature, velocity field, Nusselt number and skin friction coefficient and arranged in terms of exponential and complementary error functions satisfying the governing equations and boundary conditions. They are also reduced to the known solutions of Stokes second problem for Cu-water nanofluids. Results are computed using Maple software. The results showed that both skin friction and rate of heat transfer increase with increasing solid volume fraction of nanoparticles. MHD and porosity had an opposite effect on velocity for both types of nanofluids. The dimensionless temperature increases by increasing the Eckert and Hartmann numbers.

  相似文献   
100.
This article presents the use of the stiffness matrix method based on the first-order shear deformation theory to predict the fundamental natural frequencies and buckling loads of noncylindrical unidirectional composite helical springs subjected to initial static axial force and moment. This theoretical study about such springs with circular/rectangular cross-sections and large pitch angles is performed for the first time in the literature. The validity of the present results is verified by the benchmark studies related with initially compressed isotropic cylindrical springs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号