首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   48篇
  国内免费   9篇
化学   588篇
晶体学   3篇
力学   16篇
数学   176篇
物理学   197篇
  2023年   11篇
  2022年   13篇
  2021年   39篇
  2020年   24篇
  2019年   42篇
  2018年   40篇
  2017年   21篇
  2016年   45篇
  2015年   30篇
  2014年   31篇
  2013年   52篇
  2012年   63篇
  2011年   74篇
  2010年   42篇
  2009年   32篇
  2008年   62篇
  2007年   71篇
  2006年   60篇
  2005年   53篇
  2004年   43篇
  2003年   32篇
  2002年   22篇
  2001年   11篇
  2000年   5篇
  1999年   11篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有980条查询结果,搜索用时 787 毫秒
11.
Spontaneous generation of chirality was observed in the course of studying the mechanism of asymmetric autocatalysis by NMR in ZnR2 alkylation of pyrimidin-5-aldehydes. A systematic study was carried out in order to discover its origins. Even in clean fresh non-glass reaction vessels spontaneous ee was clearly observed, and was not dependent on any single reaction parameter. For comparison it was demonstrated that enantiomerically pure Zn alkoxide catalyst could control the configuration of the reaction product even when present at below micromolar concentrations. The high propensity of the Soai reaction system to produce an enantiomerically enriched product without initial bias is suggested to result from stochastic effects. These are especially important in autocatalysis because all the final products can be derived by breeding from a small number of initial events. The statistical excess of one enantiomer in that set is sufficient to generate a measurable ee in the product. The process is aided by the requirement for dimerisation before the product is an active catalyst. An enumeration that rationalises these observations is provided.  相似文献   
12.
A new catalytic cyclization of o-alkynylbenzaldehyde acetals 1 to the functionalized indenes 2 was found to be strictly controlled by the number of triphenylphosphine ligands on the Pd catalyst. Only complexes with three available coordination sites on Pd catalyze this reaction. Mechanistic study suggests that pi-coordination of Pd to the benzene ring is a key step controlled by the number of vacant coordination sites.  相似文献   
13.
Xenon fluoride radicals were generated by solid-state chemical reactions of mobile fluorine atoms with xenon atoms trapped in Ar matrix. Highly resolved electron spin resonance spectra of XeF* were obtained in the temperature range of 5-25 K and the anisotropic hyperfine parameters were determined for magnetic nuclei 19F, 129Xe, and 131Xe using naturally occurring and isotopically enriched xenon. Signs of parallel and perpendicular hyperfine components were established from analysis of temperature changes in the spectra and from numerical solutions of the spin Hamiltonian for two nonequivalent magnetic nuclei. Thus, the complete set of components of hyperfine- and g-factor tensors of XeF* were obtained: 19F (Aiso=435, Adip=1249 MHz) and 129Xe (Aiso=-1340, Adip=-485 MHz); g(parallel)=1.9822 and g(perpendicular)=2.0570. Comparison of the measured hyperfine parameters with those predicted by density-functional theory (DFT) calculations indicates, that relativistic DFT gives true electron spin distribution in the 2Sigma+ ground-state, whereas nonrelativistic theory underestimates dramatically the electron-nuclear contact Fermi interaction (Aiso) on the Xe atom. Analysis of the obtained magnetic-dipole interaction constants (Adip) shows that fluorine 2p and xenon 5p atomic orbitals make a major contribution to the spin density distribution in XeF*. Both relativistic and nonrelativistic calculations give close magnetic-dipole interaction constants, which are in agreement with the measured values. The other relativistic feature is considerable anisotropy of g-tensor, which results from spin-orbit interaction. The orbital contribution appears due to mixing of the ionic 2Pi states with the 2Sigma+ ground state, and the spin-orbit interaction plays a significant role in the chemical bonding of XeF*.  相似文献   
14.
Whereas tropinone derived nonaflate 3 was no suitable precursor for Heck-reactions, the related carbamate 7 was an excellent substrate for palladium-catalyzed processes. Nonaflate 7 was either isolated in excellent yield by LDA treatment of ketone 5 followed by trapping with NfF (nonafluorobutanesulfonyl fluoride) or generated in situ by fluoride-catalyzed reaction of silyl enol ether 6 with NfF. The desired 1,3-diene 8 was prepared by conventional Heck-reaction of nonaflate 7 with methyl acrylate in almost quantitative yield. Alternatively, the one-pot nonaflation-Heck protocol starting from silyl enol ether 6 provided 8 in good yield. The couplings of acrylonitrile or phenyl vinyl sulfone were also performed with in situ generated 7 and they afforded the expected 1,3-dienes 9 and 10 in good yields. The Sonogashira-reaction with phenylacetylene also started from silyl enol ether 6 and provided enyne 11 via 7 in good yield. A Diels-Alder reaction of 1,3-diene 8 with N-phenyl maleimide at 100 °C furnished tetracyclic adduct 12 in good yield, with excellent diastereofacial selectivity, but with low endo-exo-selectivity. Nonaflate 14 was easily obtained from the corresponding unsaturated bicyclic ketone 13. It behaved differently in an attempted Heck-reaction and mainly led to fragmentation products 15 and 16, whereas the expected 1,3-diene 17 was formed only as minor component. However, 14 could successfully be used in a Sonogashira-reaction with phenylacetylene to afford compound 18. These transformations demonstrate the great potential of tropinone derived alkenyl nonaflates for diversity oriented syntheses of interesting compounds containing an 8-azabicyclo[3.2.1]octane scaffold.  相似文献   
15.
The reduction of selected lanthanide cations to the zerovalent state in the room-temperature ionic liquid [Me3N(n)Bu][TFSI] is reported (where TFSI = bistriflimide, [N(SO2CF3)2]-). The lanthanide cations were introduced to the melt as the TFSI hydrate complexes [Ln(TFSI)3(H2O)3] (where Ln = La(III), Sm(III) or Eu(III)). The lanthanum compound [La(TFSI)3(H2O)3] has been crystallographically characterized, revealing the first structurally characterized f-element TFSI complex. The lanthanide in all three complexes was shown to be reducible to the metallic state in [Me3N(n)Bu][TFSI]. For both the Eu and Sm complexes, reduction to the metallic state was achieved via divalent species, and there was an additional observation of the electrodeposition of Eu metal.  相似文献   
16.
17.
gamma-Secretase cleaves the transmembrane domain of the amyloid precursor protein, a process implicated in the pathogenesis of Alzheimer's disease, and this enzyme is a founding member of an emerging class of intramembrane proteases. Modeling and mutagenesis suggest a helical conformation for the substrate transmembrane domain upon initial interaction with the protease. Moreover, biochemical evidence supports the presence of an initial docking site for substrate on gamma-secretase that is distinct from the active site, a property predicted to be generally true of intramembrane proteases. Here we show that short peptides designed to adopt a helical conformation in solution are inhibitors of gamma-secretase in both cells and enzyme preparations. Helical peptides with all d-amino acids are the most potent inhibitors and represent potential therapeutic leads. Subtle modifications that disrupt helicity also substantially reduce potency, suggesting that this conformation is critical for effective inhibition. Fluorescence lifetime imaging in intact cells demonstrates that helical peptides disrupt binding between substrate and protease, whereas an active site-directed inhibitor does not. These findings are consistent with helical peptides interacting with the initial substrate docking site of gamma-secretase, suggesting a general strategy for the development of potent and specific inhibitors of intramembrane proteases.  相似文献   
18.
The structural elucidation of metabolites of ritonavir and indinavir, HIV-protease inhibitor drugs, by liquid chromatography-electrospray ionization mass spectrometry is described. Ritonavir and indinavir were biotransformed separately by incubation with transplant quality human liver microsomes. The incubation mixture was then analyzed by HPLC coupled to ion trap (ITMS) and triple quadrupole mass analyzers. The metabolites retained most of the structural features of the parent molecules. Baseline chromatographic resolution of isobaric species by gradient elution HPLC permitted rapid structural identification of these metabolites. Both drugs were biotransformed primarily by oxidative and hydrolytic pathways to numerous metabolites that retained many of the features of the parent molecules. Triple quadrupole and ion trap mass spectrometry were applied jointly to thoroughly detect and thoroughly characterize these metabolites. Furthermore, retention-time and data-dependent scanning assured acquisition of detailed MS-MS spectra for rapid detection of metabolic pathways of ritonavir and indinavir. Comparison of the ITMS and triple quadrupole data showed qualitative and quantitative differences in the mass spectral patterns, suggesting that these instruments should be used in parallel to ensure comprehensive metabolite detection and characterization by LC-MS.  相似文献   
19.
20.
1H and 15N NMR spectra of 10 complexes exhibiting strong OHN hydrogen bonds formed by 15N-labeled collidine and different proton donors, partially deuterated in mobile proton sites, have been observed by low-temperature NMR spectroscopy using a low-freezing CDF3/CDF2Cl mixture as polar aprotic solvent. The following proton donors have been used: HCl, formic acid, acetic acid, various substituted benzoic acids and HBF4. The slow hydrogen bond exchange regime could be reached below 140 K, which allowed us to resolve 15N signal splittings due to H/D isotopic substitution. The valence bond order model is used to link the observed NMR parameters to hydrogen bond geometries. The results are compared to those obtained previously [Magn. Reson. Chem. 39 (2001) S18] for the same complexes in the organic solids. The increase of the dielectric constant from the organic solids to the solution (30 at 130 K) leads to a change of the hydrogen bond geometries along the geometric correlation line towards the zwitterionic structures, where the proton is partially transferred from oxygen to nitrogen. Whereas the changes of spectroscopic and, hence, geometric parameters are small for the systems which are already zwitterionic in the solid state, large changes are observed for molecular complexes which exhibit almost a full proton transfer from oxygen to nitrogen in the polar liquid solvent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号