首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   27篇
化学   391篇
晶体学   4篇
力学   6篇
数学   45篇
物理学   45篇
  2023年   8篇
  2022年   5篇
  2021年   8篇
  2020年   17篇
  2019年   12篇
  2018年   11篇
  2017年   10篇
  2016年   13篇
  2015年   19篇
  2014年   22篇
  2013年   36篇
  2012年   31篇
  2011年   49篇
  2010年   18篇
  2009年   31篇
  2008年   24篇
  2007年   19篇
  2006年   25篇
  2005年   30篇
  2004年   22篇
  2003年   31篇
  2002年   21篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1996年   3篇
  1987年   1篇
  1982年   1篇
排序方式: 共有491条查询结果,搜索用时 250 毫秒
441.
A strategy has been developed for caging proteins that are endogenously regulated by phosphorylation. A key phosphorylatable serine in cofilin, an F-actin cleaving protein, was replaced with a nonphosphorylatable cysteine. The latter conversion ensures that the protein is no longer regulated by endogenous protein kinases. The cysteine residue was subsequently covalently modified with a negatively charged caging moiety, which electrostatically mimics the natural serine phosphate present in the inactive wild-type protein. Photoremoval of the cage generates an active protein, which cannot be switched off by endogenous protein kinases. Caged cofilin, and its irradiated counterpart, display the anticipated F-actin depolymerization and severing activities.  相似文献   
442.
(Pyrazole)nickel dibromide complexes, (3,5-Me2pz)2NiBr2 (1), (3-Mepz)4NiBr2 (2), (pz)4NiBr2 (3) and (3,5-tBu2pz)2NiBr2 (4), were prepared by the reaction of the appropriate pyrazole with (DME)NiBr2. Solid-state structures of these complexes show a direct relation between the steric bulk of the pyrazole ligand and structure, with more bulky ligands forming four-coordinate complexes (1 and 4) whereas the less bulky ligands formed six-coordinate complexes (2 and 3). Activation of selected complexes (1 and 3) with methylaluminoxane (MAO) produced species that catalyzed the polymerization of ethylene to form high density polyethylene.  相似文献   
443.
10-Cyanotetrahydrobenzo[b][1,6]naphthyridines 3, 4 undergo addition of DMAD, followed by a Stevens rearrangement of the intermediate ylide to yield methyl dioates 8 and 9. An alternative transformation sequence starts with migration of the dimethyl butenedioate anion to the carbon of the CN group, followed by the addition of 1 mol of water, to provide succinates 10 and 11. In contrast, tetrahydropyrido[4,3-b]pyrimidines 5-7 undergo a tandem cleavage process, involving one molecule of solvent. The resulting enamines are easily cleaved by strong acids, to give dihydropyrymidinylethylamines, which are scarcely available by other synthetic means.  相似文献   
444.
A versatile synthesis of pi-stacked polyfluorenes is described. These polyfluorenes retain their cofacial conformations both in solution and in the solid state as was judged by NMR spectroscopy and X-ray crystallography. The experimental electron-detachment energies of F1-F4 showed linear correlations with the quantity 1/n, where n is the number of fluorene moieties. These correlations allowed the estimation of the vertical ionization potential (IP) of 7.10 eV and the oxidation potential (Eox) of 0.97 V versus SCE for the multiply stacked polyfluorene donor with an infinite number of fluorene moieties. These observations with pi-stacked polyfluorenes may prove to be highly relevant to the electron-transport phenomenon observed in DNA through pi-stacked bases.  相似文献   
445.
The reaction of the {2,6-[2,6-(iPr)2PhN=C(CH3)]2(C5H3N)}FeCl2 catalyst precursor with R3Al [R = Me, Et] afforded {2,6-[2,6-(iPr)2PhN=C(CH3)]2(C5H3N)}AlMe2 (1) and [eta4-LAl2Et3(mu-Cl)]Fe-(eta6-C7H8) (2), respectively. These paramagnetic species arises from both transmetalation, during which the strong terdentate ligand loses the Fe center, and reduction. The extent of reduction depends on the nature of the Al alkylating agent. The electrons necessary for the reduction are likely to be provided by cleavage of Fe-C bond of transient low-valent organo-Fe species.  相似文献   
446.
Hydride abstraction from C(5)Me(5)(CO)(2)Re(eta(2)-PhC triple bond CCH(2)Ph) (1) gave a 3:1 mixture of eta(3)-propargyl complex [C(5)Me(5)(CO)(2)Re(eta(3)-PhCH-C triple bond CPh)][BF(4)] (5) and eta(2)-1-metalla(methylene)cyclopropene complex [C(5)Me(5)(CO)(2)Re(eta(2)-PhC-C=CHPh)][BF(4)] (6). Observation of the eta(2)-isomer requires 1,3-diaryl substitution and is favored by electron-donating substituents on the C(3)-aryl ring. Interconversion of eta(3)-propargyl and eta(2)-1-metalla(methylene)cyclopropene complexes is very rapid and results in coalescence of Cp (1)H NMR resonances at about -50 degrees C. Protonation of the alkynyl carbene complex C(5)Me(5)(CO)(2)Re=C(Ph)C triple bond CPh (22) gave a third isomer, the eta(3)-benzyl complex [C(5)Me(5)(CO)(2)Re[eta(3)(alpha,1,2)-endo,syn-C(6)H(5)CH(C triple bond CC(6)H(5))]][BF(4)] (23) along with small amounts of the isomeric complexes 5 and 6. While 5 and 6 are in rapid equilibrium, there is no equilibration of the eta(3)-benzyl isomer 23 with 5 and 6.  相似文献   
447.
Yu X  Bi S  Guzei IA  Lin Z  Xue ZL 《Inorganic chemistry》2004,43(22):7111-7119
New transition metal silyl amide complexes (Me(2)N)(3)Ta[N(SiMe(3))(2)](SiPh(2)Bu(t)) (1) and (Me(2)N)M[N(SiMe(3))(2)](2)(SiPh(2)Bu(t)) (M = Zr, 2a, and Hf, 2b) were found to undergo gamma-H abstraction by the silyl ligands to give metallaheterocyclic complexes (3) and (M = Zr, 4a, and Hf, 4b), respectively. The conversion of 1 to 3 follows first-order kinetics with DeltaH() = 23.6(1.6) kcal/mol and DeltaS() = 3(5) eu between 288 and 313 K. The formation of 4a from (Me(2)N)Zr[N(SiMe(3))(2)](2)Cl (5a) and Li(THF)(2)SiPh(2)Bu(t) (6) involves the formation of the intermediate 2a, followed by gamma-H abstraction. Kinetic studies of these consecutive reactions, a second-order reaction to give 2a and then a first-order gamma-H abstraction to give 4a, were conducted by an analytical method and a numerical method. At 278 K, the rate constants k(1) and k(2) for the two consecutive reactions are 2.17(0.03) x 10(-)(3) M(-)(1) s(-)(1) and 5.80(0.15) x 10(-)(5) s(-)(1) by the analytical method. The current work is a rare kinetic study of the A + B --> C --> D (+ E) consecutive reactions. Kinetic studies of the formation of a metallaheterocyclic moiety have, to our knowledge, not been reported. In addition, gamma-H abstraction by a silyl ligand to give such a metallaheterocyclic moiety is new. Theoretical investigations of the gamma-H abstraction by silyl ligands have been conducted by density functional theory calculations at the Becke3LYP (B3LYP) level, and they revealed that the formation of the metallacyclic complexes through gamma-H abstraction is entropically driven. X-ray crystal structures of (Me(2)N)(3)Ta[N(SiMe(3))(2)](SiPh(2)Bu(t)) (1), (Me(2)N)Zr[N(SiMe(3))(2)](2)Cl (5a), and (M = Zr, 4a, and Hf, 4b) are also reported.  相似文献   
448.
Chelating dithiolate ligands--e.g., mtp from 2-(mercaptomethyl)thiophenol, edt from 1,2-ethanedithiol, and pdt from 1,3-propanedithiol--stabilize high-valent oxorhenium(V) against hydrolytic and oxidative decomposition. In addition to the dithiolate chelating to a single rhenium, one sulfur forms a coordinate bond to the other rhenium. In one arrangement this gives a dimer with a nearly planar diamond core with different internal Re-S distances. The new compounds are [MeReO(edt)](2) (2) and [MeReO(pdt)](2) (3), which can be compared to the previously known [MeReO(mtp)](2) (1). Another mode of synthesis leads to [ReO](2)(mtp)(3) (5) and [ReO](2)(edt)(3) (6). They, too, have similar Re(2)S(2) cores that involve donor atoms from two of the dithiolate ligands; the third dithiolate chelates one of the rhenium atoms. Gentle hydrolysis of 1 affords [Bu(n)4][[MeReO(mtp)](2)(mu-OH)] (7) in low yield. It appears to be the first example of this structural type for rhenium. The use of dithioerythritol as a starting material allowed the synthesis of a dioxorhenium(VII) compound, [MeReO(2)](2)(dte) (8). Its importance lies in understanding the role such compounds are believed to play as intermediates in oxygen atom catalysis. Ligation of the dimers 1-3 converts them into monomeric compounds, MeReO(dithiolate)L. These reactions go essentially to completion for L = PPh(3), but reach an equilibrium for L = NC(5)H(4)R. With R = 4-Ph, the values of K/10(3) L mol(-1) for the reactions (1-3) + 2L = 2MeReO(dithiolate)L are identical within 3 sigma: 1.15(3) (1), 1.24(4) (2), and 1.03(16) (3). The rates of monomer formation follow the rate law -d ln [dimer]/dt = k(a)[L] + k(b)[L](2). These trends were found: (1) phosphines are slow to react compared to pyridines, (2) the edt dimer 2 reacts much more rapidly than 1 and 3. Dimer 1 and MeReO(mtp)PPh(3) both catalyze oxygen atom transfer: PicO + PPh(3) --> Pic + Ph(3)PO. Compound 1 is ca. 90 times more reactive, which can be attributed to its lability toward small ligands as opposed to the low rate of displacement of PPh(3) from the mononuclear catalyst. The kinetics of this reaction follows the rate law -d[PicO]/dt = k[PicO][1]/[1 + kappa[PPh(3)]], with k = 5.8 x 10(6) L mol(-1) s(-1) and kappa = 3.5 x 10(2) L mol(-1) at 23 degrees C in benzene. A mechanism has been proposed to account for these findings.  相似文献   
449.
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号