首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   8篇
  国内免费   1篇
化学   116篇
晶体学   4篇
力学   3篇
数学   27篇
物理学   13篇
  2024年   1篇
  2022年   8篇
  2021年   9篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   10篇
  2010年   5篇
  2009年   9篇
  2008年   12篇
  2007年   9篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1961年   1篇
排序方式: 共有163条查询结果,搜索用时 24 毫秒
51.
Bladder cancer is one of most common types of cancer diagnosed in the genitourinary tract. Typical tests are costly and characterized by low sensitivity, which contributes to a growing interest in volatile biomarkers. Head space solid phase microextraction (SPME) was applied for the extraction of volatile organic compounds from urine samples, and gas chromatography time of flight mass spectrometry (GC×GC TOF MS) was used for the separation and detection of urinary volatiles. A cohort of 40 adult patients with bladder cancer and 57 healthy persons was recruited. Different VOC profiles were obtained for urine samples taken from each group. Twelvecompounds were found only in the samples from theBC group.The proposed candidate biomarkers are butyrolactone; 2-methoxyphenol; 3-methoxy-5-methylphenol; 1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one; nootkatone and 1-(2,6,6-trimethyl-1-cyclohexenyl)-2-buten-1-one.Since most of the studies published in the field are proving the potential of VOCs detected in urine samples for the screening and discrimination of patients with bladder cancer from healthy, but rarely presenting the identity of proposed biomarkers, our study represents a novel approach.  相似文献   
52.
Chemoenzymatic preparation of ribose, deoxyribose and arabinose 5-phosphates was accomplished. These compounds were tested as starting materials in the enzymatic preparation of natural and modified purine and pyrimidine nucleosides, using an overexpressed Escherichia coli phosphopentomutase.  相似文献   
53.
We report here the characterisation of eight newly synthesized thioureides of 2-(4-chlorophenoxymethyl)-benzoic acid and the evaluation of the in vitro antimicrobial activity of the new compounds against Gram-positive [Listeria monocytogenes,Staphylococcus aureus, Bacillus subtilis], Gram-negative [Psedomonas aeruginosa,Escherichia coli, Salmonella enteritidis], as well as Candida spp., using both reference and clinical multidrug resistant strains to establish the minimal inhibitory concentration (MIC)values. Our results showed that the tested compounds exhibited specific antimicrobial activities, both concerning the spectrum of antimicrobial activity and the corresponding MIC values, which ranged widely between 1024 and 32 mug/mL, depending on the nature and position of the substituents on the benzene ring. The most active compounds were N-[2-(4-chlorophenoxymethyl)-benzoyl]-N'-(2,6-dichlorophenyl)-thiourea (5 g) and N-[2-(4-chlorophenoxymethyl)-benzoyl]-N'-(4-bromophenyl)-thiourea (5h), which showed a broad spectrum of antimicrobial activity against enterobacterial strains (E. coli and S. enteritidis),P. aeruginosa, S. aureus and Candida spp. All the tested compounds except 5f were highly active against S. aureus (MIC=32 mug/mL), suggesting their possible use in the treatment of MRSA infections. Four of compounds also exhibited antifungal activity (MIC =256-32 microg/mL) against C. albicans, but L. monocytogenes as well as B. subtilis were resistant to all tested compounds. Our studies thus demonstrated that among other biological activities,the thioureides of 2-(4-chlorophenoxymethyl)-benzoic acid also exhibit selective and effective antimicrobial properties that could lead to the selection and use of these compounds as efficient antimicrobial agents, especially for the treatment of multidrug resistant infections.  相似文献   
54.
The successful application of high throughput molecular simulations to determine biochemical properties would be of great importance to the biomedical community if such simulations could be turned around in a clinically relevant timescale. An important example is the determination of antiretroviral inhibitor efficacy against varying strains of HIV through calculation of drug-protein binding affinities. We describe the Binding Affinity Calculator (BAC), a tool for the automated calculation of HIV-1 protease-ligand binding affinities. The tool employs fully atomistic molecular simulations alongside the well established molecular mechanics Poisson-Boltzmann solvent accessible surface area (MMPBSA) free energy methodology to enable the calculation of the binding free energy of several ligand-protease complexes, including all nine FDA approved inhibitors of HIV-1 protease and seven of the natural substrates cleaved by the protease. This enables the efficacy of these inhibitors to be ranked across several mutant strains of the protease relative to the wildtype. BAC is a tool that utilizes the power provided by a computational grid to automate all of the stages required to compute free energies of binding: model preparation, equilibration, simulation, postprocessing, and data-marshaling around the generally widely distributed compute resources utilized. Such automation enables the molecular dynamics methodology to be used in a high throughput manner not achievable by manual methods. This paper describes the architecture and workflow management of BAC and the function of each of its components. Given adequate compute resources, BAC can yield quantitative information regarding drug resistance at the molecular level within 96 h. Such a timescale is of direct clinical relevance and can assist in decision support for the assessment of patient-specific optimal drug treatment and the subsequent response to therapy for any given genotype.  相似文献   
55.
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder characterized by the selective loss of motor neurons from the spinal cord and brain. About 10% of ALS cases are familial (FALS), and in 20% of these cases the disease has been linked to mutations in the Cu,Zn-SOD1 gene. Although the molecular mechanisms causing these forms of ALS are still unclear, evidence has been provided that motor neurons injuries associated with mutant superoxide dismutase (SOD1)-related FALS result from a toxic gain-in-fuction of the mutated enzyme. To understand better the role of these mutations in the pathophysiology of FALS we have compared the pattern of proteins expressed in human neuroblastoma SH-SY5Y cell line with those of cell lines transfected with plasmids expressing the wild-type human SOD1 and the H46R and G93A mutants. 2-DE coupled to MALDI-TOF-MS were the proteomic tools used for identification of differentially expressed proteins. These included cytoskeletal proteins, proteins that regulate energetic metabolism and intracellular redox conditions, and the ubiquitin proteasome system. The proteomic approach allowed to expand the knowledge on the pattern of proteins, with altered expression, which we should focus on, for a better understanding of the possible mechanism involved in mutated-SOD1 toxicity. The cellular models considered in this work have also evidenced biochemical characteristics common to other SOD1-mutated cellular lines connected to the pathogenesis of ALS.  相似文献   
56.
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.  相似文献   
57.
Epoxies are an important family of shape memory polymers (SMP) due to their excellent stability and thermo-mechanical endurance and the high values of shape fixity and shape recovery. Actuators based on these materials can be designed for large tensile elongations (e.g., 75% or higher) or large recovered stresses (e.g., 3 MPa or higher). However, meeting these requirements simultaneously is a difficult task because changes in the crosslink density affect both variables in opposite ways. We show that an SMP based on an epoxy network with both chemical and physical crosslinks could be strained up to 75% in four repeated shape memory cycles with tensile stresses close to 3 MPa. Shape fixity and shape recovery values were close to 98% and 96%, respectively, for everyone of the cycles, without any significant change between the first and subsequent cycles.  相似文献   
58.
ABSTRACT: A simple reversed phase high performance liquid chromatographic method with diode array detector (HPLC-DAD) has been developed and subsequently validated for the determination of fexofenadine hydrochloride (FEX) and its related compounds; keto fexofenadine (Impurity A), meta isomer of fexofenadine (Impurity B), methyl ester of fexofenadine (Impurity C) in addition to the methyl ester of ketofexofenadine (Impurity D). The separation was based on the use of a Hypersil BDS C-18 analytical column (250 × 4.6 mm, i.d., 5 μm). The mobile phase consisted of a mixture of phosphate buffer containing 0.1 gm% of 1-octane sulphonic acid sodium salt monohydrate and 1% (v/v) of triethylamine, pH 2.7 and methanol (60:40, v/v). The separation was carried out at ambient temperature with a flow rate of 1.5 ml/min. Quantitation was achieved with UV detection at 215 nm using lisinopril as internal standard, with linear calibration curves at concentration ranges 0.1-50 μg/ml for FEX and its related compounds. The optimized conditions were used to develop a stability-indicating HPLC-DAD method for the quantitative determination of FEX and its related compounds in tablet dosage forms. The drugs were subjected to oxidation, hydrolysis, photolysis and heat to apply stress conditions. Complete separation was achieved for the parent compounds and all degradation products. The method was validated according to ICH guidelines in terms of accuracy, precision, robustness, limits of detection and quantitation and other aspects of analytical validation.  相似文献   
59.
Films prepared according to a layer-by-layer (LBL) manner find increasing importance in many applications such as coatings with dedicated optical or electronic properties, particularly when including nanomaterials. An alternative way to prepare such hybrid layer-by-layer coatings is to perform sol-gel chemistry in a layer-by-layer manner. In this article, we highlight the importance of the NaCl concentration as a parameter to control the growth as well as the properties of LBL films made from poly(ethylene imine) as the organic counterpart and titanium IV (bisammoniumlactato)dihydroxyde ([Ti(lac)(2)(OH)(2)](2-)) as the precursor of TiO(2). An increase in the sodium chloride concentration leads to the faster growth of the film and to a decrease in the number of hexacyanoferrate anions remaining in the film after a buffer rinse. This may be due to a progressive increase in the fraction of negatively charged TiO(2) as suggested by transmission electron microscopy. In the presence of 0.5 M NaCl, the fraction of TiO(2) is close to 60% in mass. As a surprising finding, the films produced from 0.15 M NaCl are not homogeneously filled with TiO(2) even if the film is produced in an LBL fashion. The increased concentration of TiO(2) at the film-solution interface could constitute a barrier for the incorporation of the negatively charged redox probe.  相似文献   
60.
Motivated by constraint-based CAD software, we develop the foundation for the rigidity theory of a very general model: the body-and-cad structure, composed of rigid bodies in 3D constrained by pairwise coincidence, angular and distance constraints. We identify 21 relevant geometric constraints and develop the corresponding infinitesimal rigidity theory for these structures. The classical body-and-bar rigidity model can be viewed as a body-and-cad structure that uses only one constraint from this new class.As a consequence, we identify a new, necessary, but not sufficient, counting condition for minimal rigidity of body-and-cad structures: nested sparsity. This is a slight generalization of the well-known sparsity condition of Maxwell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号